Agrobacterium sp. ATCC 31749 was previously shown to be an advantageous host for oligosaccharide production. Unexpectedly, the addition of citrate to the oligosaccharide synthesis reaction resulted in up to a sixfold improvement in the production N-aceytl-lactosamine, a disaccharide. The possible mechanisms for this citrate-induced stimulation of oligosaccharide production were investigated, including the consumption of citrate as a carbon and energy source, enhanced metal ion solubility from citrate chelation, and the ability of citrate to act as a buffer. The main mechanisms for the effect of citrate on oligosaccharide production were determined to be carbon and energy provision from citrate consumption and pH maintenance. ATCC 31749 was shown to co-metabolize citrate along with sucrose, a preferred carbon source, indicating the lack of a catabolite repression system in this Agrobacterium. Metabolic flux analysis suggested an increase in flux through TCA cycle for the citrate-containing reaction, which may provide additional energy supply to support enhanced oligosaccharide production. The citrate stimulation of oligosaccharide synthesis was shown to be unique to the Agrobacterium strain, as a similarly engineered Escherichia coli strain did not show significant improvement in oligosaccharide production with citrate addition. This work provides insight into the metabolism of Agrobacterium sp. ATCC 31749 and highlights important factors in whole-cell oligosaccharide synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-011-9179-1 | DOI Listing |
Microb Cell Fact
January 2025
Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea.
Background: 2'-Fucosyllactose (2'-FL) is a predominant human milk oligosaccharide that significantly enhances infant nutrition and immune health. This study addresses the need for a safe and economical production of 2'-FL by employing Generally Recognized As Safe (GRAS) microbial strain, Priestia megaterium ATCC 14581. This strain was chosen for its robust growth and established safety profile and attributing suitable for industrial-scale production.
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China. Electronic address:
Oleanolic acid (OA) is a food-derived bioactive component with antidiabetic activity, but its water solubility and oral bioavailability are notably restricted. In this study, to overcome these limitations, ursodeoxycholic acid-modified chitosan oligosaccharide (UCOS) was synthesized to encapsulate OA in self-assembled nanomicelles (UCOS-OA). The encapsulation efficiency and drug loading of UCOS-OA were 86 % and 11 %, respectively.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
Carrageenan has strong structural heterogeneity, resulting in the production of several hybridized forms in nature. Furcellaran is a typical hybrid type of carrageenan that includes both κ-carrageenan and β-carrageenan motifs in its structure. The discovery and characterization of a novel furcellaranase is of great significance for investigating and determining the structures of carrageenan.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
Diabetic wounds are notoriously difficult to heal due to impaired cell repair mechanisms, reduced angiogenesis, and a heightened risk of infection. Fibroblasts play a vital role in wound healing by producing extracellular matrix (ECM) components and various growth factors, but their function is inhibited in diabetic wounds. Chitooligosaccharides (COS), intermediate products of chitosan degradation, have shown efficacy in promoting tissue repair, yet their role in diabetic wound healing remains underexplored.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China. Electronic address:
Hyaluronic acid (HA) exhibits various biological activities and functions, mainly governed by its molecular weight (M). Traditional HA degradation methods encounter challenges such as environmental pollution and high costs. Thus, developing a safe cell factory with an efficient regulation strategy for one-step production of specific M HA has attracted significant research interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!