Bovines present contrasting, heritable phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus. Tick salivary glands produce IgG-binding proteins (IGBPs) as a mechanism for escaping from host antibodies that these ectoparasites ingest during blood meals. Allotypes that occur in the constant region of IgG may differ in their capacity to bind with tick IGBPs; this may be reflected by the distribution of distinct allotypes according to phenotypes of tick infestations. In order to test this hypothesis, we investigated the frequency of haplotypes of bovine IgG2 among tick-resistant and tick-susceptible breeds of bovines. Sequencing of the gene coding for the heavy chain of IgG2 from 114 tick-resistant (Bos taurus indicus, Nelore breed) and tick-susceptible (B. t. taurus, Holstein breed) bovines revealed SNPs that generated 13 different haplotypes, of which 11 were novel and 5 were exclusive of Holstein and 3 of Nelore breeds. Alignment and modeling of coded haplotypes for hinge regions of the bovine IgG2 showed that they differ in the distribution of polar and hydrophobic amino acids and in shape according to the distribution of these amino acids. We also found that there was an association between genotypes of the constant region of the IgG2 heavy chain with phenotypes of tick infestations. These findings open the possibility of investigating if certain IgG allotypes hinder the function of tick IGBPs. If so, they may be markers for breeding for resistance against tick infestations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068256 | PMC |
http://dx.doi.org/10.1007/s00251-011-0515-y | DOI Listing |
Biosens Bioelectron
March 2025
Cnam, SATIE Laboratory, UMR, CNRS 8029, 292 rue Saint Martin, 75003, Paris, France. Electronic address:
This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.
View Article and Find Full Text PDFTalanta
December 2024
Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic. Electronic address:
This work focuses on profiling N-linked glycans by capillary electrophoresis coupled to mass spectrometry using a novel fluorescent and mass spectrometry (MS) active derivatization tag. The label is based on 2-phenylpyridine bearing tertiary amine and hydrazide functionalities. It provides efficient labeling via hydrazone formation chemistry, promising fluorescence properties, and ionization efficiency in the positive ion MS mode.
View Article and Find Full Text PDFFront Immunol
December 2024
Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India.
Introduction: Globally, ticks rank second only to mosquitoes as vectors of deadly pathogens affecting humans and first in transmitting animal pathogens, presenting a significant challenge to human wellness and sustainability of livestock-based industries. Traditional tick control via chemical acaricides impacts on the environment and has led to the emergence of multi-acaricide-resistant tick populations. Use of immunoprophylactic, along with other components of integrated tick management, holds the potential to mitigate tick infestations in a sustainable manner.
View Article and Find Full Text PDFSci Rep
November 2024
Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore.
The increasing demand for biotherapeutics has necessitated the evaluation of their critical quality attributes, one of which is glycosylation, an essential post-translational modification found on many biological molecules. In particular, the purification of N-glycans after their release from the proteins and derivatization is important in ensuring the removal of the deglycosylated protein, excess labelling reagents and salts for subsequent analysis. However, current methods of N-glycans purification are either expensive, laborious, time-consuming or not catered for high throughput analysis.
View Article and Find Full Text PDFVaccine
January 2025
SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!