Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Root resorption resulting from orthodontic treatment is an unpredictable adverse effect. Literature examining the potential protective influence of tooth cementum minerals against orthodontically induced inflammatory root resorption has been sparse. Fluorine could have a role in minimizing the extent and severity of resorptive lesions. The purpose of this study was to examine the elemental content of tooth cementum in orthodontically induced inflammatory root resorption lesions and the effect of systemic fluoride.
Methods: Twenty 7-week-old Wistar rats were divided into 2 groups of 10 and exposed to systemic fluoride (100 ppm) or nonfluoridated drinking water for 2 weeks. Orthodontic tooth movement was implemented with a nickel-titanitum closing coil with a force of 100 g. The molars were then extracted, dissected, and prepared for cross-sectioning through the largest mesial midroot crater. The samples were mounted and scanned by using the Commonwealth Scientific and Industrial Research Organisation and the Australian Research Council's National Key for Geochemical Evolution and Metallogeny of Continents Nuclear Microprobe (Melbourne, Victoria, Australia). Analysis of variance (ANOVA) was used for statistical comparison of the elements and to determine the effect of fluoride, and unaffected tooth structure compared with root resorption craters. The Student t test was used to compare root crater lengths and depths of the fluoride vs no-fluoride groups.
Results: Root resorption lesions of the group exposed to fluoride were significantly reduced in length and depth (P <0.01). The mineral content of the root resorption craters of the fluoride group had higher concentrations of fluorine and zinc (P <0.01). There was less calcium in the craters of the no-fluoride group compared with the fluoride group (P <0.05).
Conclusions: Cementum quality (influenced by systemic fluoride exposure) might impact the extent of orthodontically induced resorptive defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajodo.2009.12.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!