Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The neuroinflammation characterized by glial activation and release of proinflammatory mediators is considered to play a critical role in the pathogenesis of Alzheimer's disease (AD). Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the Chinese herb radix Stephania tetrandra, has been demonstrated to decrease the expression of proinflammatory mediators by inhibition of nuclear factor-κB (NF-κB) activation. The purpose of the study was to investigate effects of tetrandrine on experimental model of AD.
Materials And Methods: Tetrandrine was administered in a rat model of AD induced by amyloid-β (Aβ)(1-42). The learning and memory impairment was examined using Morris water maze; the extent of histological injury in hippocampus was determined by Nissl staining; NF-κB DNA binding activity was assessed by electrophoretic mobility shift assay; the expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β was measured by enzyme-linked immunosorbent assay.
Results: A significant improvement was observed in learning and memory impairment in rats with tetrandrine, and the increase in NF-κB DNA binding activity, the over-expression in IL-1β and TNF-α as well as the increased histological injury in hippocampus in rats induced by Aβ(1-42) were significantly reduced following administration of tetrandrine.
Conclusion: Tetrandrine could significantly ameliorate Aβ(1-42)-induced spatial learning and memory impairment, and the beneficial effect of tetrandrine treatment could be linked, at least in part, to the inhibition of NF-κB activity and the downregulation of expression of IL-1β and TNF-α, suggesting that administration of tetrandrine may provide a therapeutic approach for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2011.01.103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!