PMMA highlights the layering transition of PDMS in Langmuir films.

Langmuir

Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands.

Published: March 2011

We report a system consisting of a mixed Langmuir monolayer, made of water-insoluble, spreadable, fluid-like polymers polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA) with a minority P(DMS-b-MMA) copolymer. We have performed both Langmuir trough pressure/area isotherm measurements and Brewster angle microscopy (BAM) observations and complement the experiments with molecularly detailed self-consistent field (SCF) calculations. PDMS undergoes a layering transition that is difficult to detect by BAM. Addition of PMMA gives contrast in BAM, now showing a two-phase system: if this would consist of separate two-dimensional (2D) PMMA and PDMS phases, a PDMS-PMMA diblock should accumulate at the phase boundary. However, the diblock copolymer of PDMS-PMMA failed to show the expected "lineactant" behavior, i.e., failed to accumulate at the phase boundary. The calculations point to a nontrivial arrangement of the polymer chains at the interface: in mixtures of the two homopolymers, in a rather wide composition ratio, we find a vertical (with respect to the air/water interfacial plane) configuration, with PMMA sitting preferably at the PDMS/water interface of the thicker PDMS film, during the PDMS layering phase transition. This also explains why the diblock copolymer is not a lineactant. Both PMMA and P(DMS-b-MMA) are depleted from the thin-thick PDMS film interface, and the line tension between the phases is, consequently, increased, in the binary mixtures as well as in the ternary ones.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la104285zDOI Listing

Publication Analysis

Top Keywords

layering transition
8
accumulate phase
8
phase boundary
8
diblock copolymer
8
pdms film
8
pdms
7
pmma
6
pmma highlights
4
highlights layering
4
transition pdms
4

Similar Publications

Nup107 contributes to the maternal to zygotic transition by preventing the premature nuclear export of pri-miRNA 427.

Development

January 2025

Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.

Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula suggesting a critical role prior to gastrulation. We find depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm.

View Article and Find Full Text PDF

Building Bilayer MoS with Versatile Morphologies via Etching-And-Growth Coexisting Method.

Small

January 2025

Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China.

The etch-engineering is a feasible avenue to tailor the layer number and morphology of 2D layered materials during the chemical vapor deposition (CVD) growth. However, less reports strengthen the etch-engineering used in the fabrication of high-quality transition metal dichalcogenide (TMD) materials with tunable layers and desirable morphologies to improve their prominent performance in electronic and optoelectronic devices. Here, an etching-and-growth coexistence method is reported to directly synthesize high-quality, high-symmetric MoS bilayers with versatile morphologies via CVD.

View Article and Find Full Text PDF

Photocatalytic reduction of CO to produce organic fuels is a promising strategy for addressing carbon reduction and energy scarcity. Transition metal carbides (TiCT ) are of particular interest due to their unique layered structures and excellent electrical conductivity. However, the practical application of TiCT is limited by the poor separation efficiency of photogenerated charge carriers and the low migration ability of photogenerated electrons.

View Article and Find Full Text PDF

Charge Transfer Effect in Layered Cathodes Through MEMS-Based In Situ TEM Studies.

Small

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing WUT Nano Key Lab, Wuhan, Hubei, 430070, China.

The irreversible lattice oxygen release is the primary issue in layered oxide cathodes which is generally attributed to a consecutive phase transition with less lattice oxygen content. Herein, an anomalous metal segregation pathway is observed in oxygen vacancy defective layered cathodes, which happens far before the onset of phase transitions. The correlation of electron energy loss spectroscopy indicates that an early charge transfer from oxygen 2p to Mn 3d orbital is responsible.

View Article and Find Full Text PDF

DMSO-Assisted Control Enables Highly Efficient 2D/3D Hybrid Perovskite Solar Cells.

Small

January 2025

State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.

Building 2D/3D heterojunction is a promising approach to passivate surface defects and improve the stability of perovskite solar cells (PSCs). Developing effective methods to build high-quality 2D/3D heterojunction is in demand. The formation of 2D/3D heterojunction involves both the diffusion of 2D spacer molecules and phase transition from 3D to 2D structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!