The properties and function of an anionic conjugated polyelectrolyte (CPE)-containing ion-conducting polyethylene oxide pendant (PF(PEO)CO(2)Na) as electron injection layers (EILs) in polymer light-emitting diodes (PLEDs) are investigated. A primary goal was to design a CPE structure that would enable acceleration of the device temporal response through facilitation of ion motion. Pristine PLEDs containing PF(PEO)CO(2)Na exhibit luminance response times on the order of tenths of seconds. This delay is attributed to the formation of ordered structures within the CPE film, as observed by atomic force microscopy. Complementary evidence is provided by electron transport measurements. The ordered structures are believed to slow ion migration within the CPE EIL and hence result in a longer temporal response time. It is possible to accelerate the response by a combination of thermal and voltage treatments that "lock" ions within the interfaces adjacent to PF(PEO)CO(2)Na. PLED devices with luminance response times of microseconds, a 10(5) fold enhancement, can therefore be achieved. Faster luminance response time opens up the application of PLEDs with CPE layers in display technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja106268w | DOI Listing |
J Cogn Neurosci
January 2025
Queen's University, Kingston, Ontario, Canada.
Pupil responses are commonly used to provide insight into visual perception, autonomic control, cognition, and various brain disorders. However, making inferences from pupil data can be complicated by nonlinearities in pupil dynamics and variability within and across individuals, which challenge the assumptions of linearity or group-level homogeneity required for common analysis methods. In this study, we evaluated luminance evoked pupil dynamics in young healthy adults (n = 10, M:F = 5:5, ages 19-25 years) by identifying nonlinearities, variability, and conserved relationships across individuals to improve the ability to make inferences from pupil data.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Gunma Prefectural College of Health Sciences, 323-1, Kamioki-machi, Maebashi, Gunma, Japan, Maebashi, Gunma, 371-0052, JAPAN.
In digital image diagnosis using medical displays, it is crucial to rigorously manage display devices to ensure appropriate image quality and diagnostic safety. The aim of this study was to develop a model for the efficient quality control (QC) of medical displays, specifically addressing the measurement items of contrast response and maximum luminance as part of constancy testing, and to evaluate its performance. In addition, the study focused on whether these tasks could be addressed using a multitasking strategy.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.
View Article and Find Full Text PDFVision Res
January 2025
Department of Psychology, University of Nevada, Reno, NV 89557, United States.
A neural theory of human lightness computation is described and computer-simulated. The theory proposes that lightness is derived from transient ON and OFF cell responses in the early visual pathways that have different characteristic neural gains and that are generated by fixational eye movements (FEMs) as the eyes transit luminance edges in the image. The ON and OFF responses are combined with corollary discharge signals that encode the eye movement direction to create directionally selective ON and OFF responses.
View Article and Find Full Text PDFAdv Mater
January 2025
Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China.
Textiles have played a pivotal role in human development, evolving from basic fibers into sophisticated, multifunctional materials. Advances in material science, nanotechnology, and electronics have propelled next-generation textiles beyond traditional functionalities, unlocking innovative possibilities for diverse applications. Thermal management textiles incorporate ultralight, ultrathin insulating layers and adaptive cooling technologies, optimizing temperature regulation in dynamic and extreme environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!