An enriched stable isotope approach was developed to evaluate Zn bioavailability to Lumbricus terrestris. The decrease in (68)Zn/(66) Zn in organ tissues was used to assess the relative magnitude of the bioavailable soil Zn pool. This tool was then used to specifically evaluate bioavailability as a function of soil cation distribution. Storm-water pond soils were modified using two treatment regimens whereby H(2)O-extractable Zn was varied either by different ZnCl(2) amendments or by constant ZnCl(2) amendment followed by varying the soil cation distribution through salt amendments (NaCl or CaCl(2)). Earthworms previously equilibrated in (68) Zn-spiked soil were introduced to experimental soils, and after 2 d, removed for analysis of isotopic ratios in specific tissues. Despite a wide range of H(2)O-extractable Zn values produced by the salt treatments (0.007-24.3 mg/kg), a significant relationship between Zn turnover rate in earthworm tissues and H(2)O-extractable Zn in the salt-treated soils was not observed. Rather, considering both treatment regimens, turnover rate better correlated with Zn present in broader pools, such as that extracted by 6M HNO(3). The bioavailability of trace metals to earthworms may be poorly characterized by loosely bound fractions such as the pore water. Additionally, the turnover rate of (68)Zn in anterior organ tissues may be an effective tool to evaluate the relative magnitude of the bioavailable soil Zn pool.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.421DOI Listing

Publication Analysis

Top Keywords

turnover rate
12
enriched stable
8
stable isotope
8
lumbricus terrestris
8
evaluate bioavailability
8
organ tissues
8
relative magnitude
8
magnitude bioavailable
8
bioavailable soil
8
soil pool
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!