Background: Primitive brain tumors are the leading cause of cancer-related death in children. Tumor cells with stem-like properties (TSCs), thought to account for tumorigenesis and therapeutic resistance, have been isolated from high-grade gliomas in adults. Whether TSCs are a common component of pediatric brain tumors and are of clinical relevance remains to be determined.
Methodology/principal Findings: Tumor cells with self-renewal properties were isolated with cell biology techniques from a majority of 55 pediatric brain tumors samples, regardless of their histopathologies and grades of malignancy (57% of embryonal tumors, 57% of low-grade gliomas and neuro-glial tumors, 70% of ependymomas, 91% of high-grade gliomas). Most high-grade glioma-derived oncospheres (10/12) sustained long-term self-renewal akin to neural stem cells (>7 self-renewals), whereas cells with limited renewing abilities akin to neural progenitors dominated in all other tumors. Regardless of tumor entities, the young age group was associated with self-renewal properties akin to neural stem cells (P = 0.05, chi-square test). Survival analysis of the cohort showed an association between isolation of cells with long-term self-renewal abilities and a higher patient mortality rate (P = 0.013, log-rank test). Sampling of low- and high-grade glioma cultures showed that self-renewing cells forming oncospheres shared a molecular profile comprising embryonic and neural stem cell markers. Further characterization performed on subsets of high-grade gliomas and one low-grade glioma culture showed combination of this profile with mesenchymal markers, the radio-chemoresistance of the cells and the formation of aggressive tumors after intracerebral grafting.
Conclusions/significance: In brain tumors affecting adult patients, TSCs have been isolated only from high-grade gliomas. In contrast, our data show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a wide range of histological sub-types and grades of pediatric brain tumors. They suggest that cellular mechanisms fueling tumor development differ between adult and pediatric brain tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030582 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016375 | PLOS |
World Neurosurg
December 2024
Department of Neurosurgery, New York University Grossman School of Medicine, New York City, NYC, USA.
Background: This historical account reviews the course and lasting impact of Dr. Harvey Cushing (1869-1939) in neurosurgery.
Methods: The writing of this project was sparked by the discovery of original scientific and bibliographical information about Cushing.
Biomaterials
December 2024
Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA. Electronic address:
Glioblastoma (GBM), the most common primary brain tumor, lacks effective treatments. Emerging evidence suggests mitochondria as a promising therapeutic target, albeit successfully targeting represents a major challenge. Recently, we discovered a group of triterpenes that can self-assemble into nanoparticles (NPs) for cancer treatment.
View Article and Find Full Text PDFNeuro Oncol
December 2024
Genetics Department, Institut Curie, Paris, France.
Background: Medulloblastoma (MB) is one of the most prevalent embryonal malignant brain tumors. Current classification organizes these tumors into four molecular subgroups (WNT, SHH, Group 3, and Group 4 MB). Recently, a comprehensive classification has been established, identifying numerous subtypes, some of which exhibit a poor prognosis.
View Article and Find Full Text PDFActa Neurochir (Wien)
December 2024
Medical Faculty of Heidelberg University, Heidelberg, Germany.
Introduction: Tumorous growths in the sellar region pose significant clinical challenges due to their proximity to critical visual structures such as the optic chiasm and optic nerves. Given their proximity to the optic system, these tumors are often diagnosed due to a progressive decrease in visual acuity. Thus, surgical intervention is crucial to prevent irreversible damage, as timely decompression can halt the progression of edema and subsequent optic atrophy.
View Article and Find Full Text PDFNeuro Oncol
December 2024
Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.
Background: NF2-related schwannomatosis (NF2-SWN) is associated with multiple benign tumors in the nervous system. NF2-SWN, caused by mutations in the NF2 gene, has developed into intracranial and spinal schwannomas. Because of the high surgical risk and frequent recurrence of multiple tumors, targeted therapy is necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!