Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF) of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM) or fluorescence-correlation spectroscopy (FCS) to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030564PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016045PLOS

Publication Analysis

Top Keywords

non-equilibrium steady
12
steady state
12
confinement burst
12
relaxation kinetics
8
non-linear chemical
8
chemical reaction
8
reaction networks
8
kinetics non-linear
8
noise sources
8
confinement
8

Similar Publications

We consider a discrete-time Markovian random walk with resets on a connected undirected network. The resets, in which the walker is relocated to randomly chosen nodes, are governed by an independent discrete-time renewal process. Some nodes of the network are target nodes, and we focus on the statistics of first hitting of these nodes.

View Article and Find Full Text PDF

Thermostat-induced artificial lane formation in non-equilibrium molecular dynamics.

J Chem Phys

January 2025

CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.

While most thermostats in molecular dynamics are designed for equilibrium systems, their extension to non-equilibrium simulations has little theoretical justification. In the literature, an artifact referred to as "lane formation" was discovered; however, its cause remained unclear and was simply attributed to a constraint on velocity fluctuations or non-ergodicity in thermostats. In addition, global deterministic thermostatted dynamics was found to exhibit unceasing phase-space compression in steady states, incompatible with their expected stationary distributions and Gibbs entropy, which was mistakenly perceived as inescapable.

View Article and Find Full Text PDF

Given that non-equilibrium molecular motion in thermal gradients is influenced by both solute and solvent, the application of spectroscopic methods that probe each component in a binary mixture can provide insights into the molecular mechanisms of thermal diffusion for a large class of systems. In the present work, we use an all-optical setup whereby near-infrared excitation of the solvent leads to a steady-state thermal gradient in solution, followed by characterization of the non-equilibrium system with electronic spectroscopy, imaging, and intensity. Using rhodamine B in water as a case study, we perform measurements as a function of solute concentration, temperature, wavelength, time, near-infrared laser power, visible excitation wavelength, and isotope effect.

View Article and Find Full Text PDF

Thermal-induced transitions between multistable states hold significant interest in stochastic thermodynamics and dynamical control with nanomechanical systems. Here, we study kinetic-energy-dependent over-barrier behaviors in the rotational degree of freedom of silica nanodumbells in tilted periodic potentials. In the rotational degree of freedom, nanodumbbells can undergo critical transitions between librations and rotations as the ellipticity of the trapping laser field changes.

View Article and Find Full Text PDF
Article Synopsis
  • Non-equilibrium quantum transport is essential for advancing technologies like nanoelectronics and thermal management, focusing on energy and particle transfer through quantum channels.
  • Using a superconducting quantum processor, researchers demonstrated non-equilibrium steady quantum transport by creating "baths" with qubit ladders, showing that particle currents were consistent regardless of how the baths were initialized.
  • This study provides experimental support for theories in statistical mechanics and prethermalisation, while also allowing precise control over variables that affect steady currents, opening new avenues for exploring quantum transport in complex quantum systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!