Background: Deficits in cognitive function have been demonstrated among workers chronically exposed to solvents, but the neural basis for these deficits has not been shown.
Objectives: We used functional magnetic resonance imaging (fMRI) to compare pathophysiological changes in brain function between solvent-exposed and control workers.
Methods: Painters, drywall tapers, and carpenters were recruited from the International Union of Painters and Allied Trades, District Council 9 in New York City and District Council 21 in Philadelphia, Pennsylvania, and from the Carpenters Union in New Jersey. Twenty-seven solvent-exposed and 27 control subjects of similar age, education, and occupational status completed the N-Back working memory test during fMRI. After controlling for confounders (age; lifetime marijuana, cocaine, and alcohol use; blood lead; symptoms of depression; verbal intelligence), voxelwise group analysis and regional activation levels were compared and then correlated with an index of lifetime solvent exposure.
Results: Solvent-exposed workers' performance on the N-Back was significantly worse than that of controls. Activation of the anterior cingulate, prefrontal, and parietal cortices--areas serving working memory function and attention--was also significantly lower for solvent-exposed workers relative to controls. After controlling for confounders, we observed a negative correlation between lifetime solvent exposure and activation in these same regions among the solvent-exposed workers.
Conclusions: This study is one of the few to document neural structures affected by exposure to solvents. Our findings provide a biological mechanism for the neurobehavioral deficits in working memory and attention that have previously been reported by other groups studying the effects of chronic exposure to solvents. These imaging markers, which are consistent with the neurobehavioral measures in our subject population, are consistent with altered brain pathology caused by prolonged exposure to solvent mixtures during construction work.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3222975 | PMC |
http://dx.doi.org/10.1289/ehp.1002529 | DOI Listing |
Schizophr Res Cogn
June 2025
University Department of Child and Adolescent Psychiatry, Children's Hospitals of NICE CHU-Lenval, Nice, France.
Objective: To conduct a systematic review of neurocognitive dysfunctions in patients with childhood-onset schizophrenia (COS), a neuropsychiatric disorder that occurs before age 13 and is rarer and more severe than adult-onset schizophrenia.
Method: A search was made in the PubMed database. Sixty-seven studies (out of 543) which analyzed Intellectual Quotient (IQ), attentional, memory and executive functions were selected by two independent researchers.
Water Res X
May 2025
Institute for Artificial Intelligence R&D of Serbia, Fruškogorska 1, Novi Sad 21000, Serbia.
This study evaluates three Machine Learning (ML) models-Temporal Kolmogorov-Arnold Networks (TKAN), Long Short-Term Memory (LSTM), and Temporal Convolutional Networks (TCN)-focusing on their capabilities to improve prediction accuracy and efficiency in streamflow forecasting. We adopt a data-centric approach, utilizing large, validated datasets to train the models, and apply SHapley Additive exPlanations (SHAP) to enhance the interpretability and reliability of the ML models. The results show that TKAN outperforms LSTM but slightly lags behind TCN in streamflow forecasting.
View Article and Find Full Text PDFPublic Health Pract (Oxf)
June 2025
MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK.
Objectives: Disuse theory predicts that cognitive function is vulnerable to transitions that remove factors that support cognitive skills. We sought to investigate whether non-employment over the working life was associated with cognitive function and decline in later life (≥60 years old), and possible gender differences in the association.
Study Design: Longitudinal study.
Cogn Neurodyn
December 2025
Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, TamilNadu India.
Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran.
The term "neuroenhancement" describes the enhancement of cognitive function associated with deficiencies resulting from a specific condition. Nevertheless, there is currently no agreed-upon definition for the term "neuroenhancement", and its meaning can change based on the specific research being discussed. As humans, our continual pursuit of expanding our capabilities, encompassing both cognitive and motor skills, has led us to explore various tools.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!