Benzoylformate decarboxylase (BFD, EC 4.1.1.7) is a homotetrameric thiamine diphosphate (ThDP)-dependent enzyme which catalyzes the synthesis of chiral 2-hydroxyketones accepting a broad range of aldehydes as substrates. In this study the synthesis of 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde was catalyzed by three BFD variants namely BFD F464I, BFD A460I and BFD A460I-F464I. This paper reports the effect of hydrostatic pressure up to 290 MPa when the reactions were carried out at different benzaldehyde concentrations (5-40 mM) as well as at different pH values (7.0-8.5). Acetaldehyde concentration was fixed at 400 mM in all biotransformations. Reactions performed at high benzaldehyde concentrations and at high hydrostatic pressures showed an increase in (R)-2-HPP formation catalyzed by all BFD variants. For BFD A460I-F464I we observed an increase in the ee of (R)-2-HPP up to 80%, whereas at atmospheric conditions this variant synthesizes (R)-2-HPP with an ee of only 50%. Alkaline conditions (up to pH 8.5) and high hydrostatic pressures resulted in an increase of (R)-2-HPP synthesis, especially in the case of BFD A460I and BFD F464I.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2011.01.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!