AI Article Synopsis

Article Abstract

The genetic and biochemical aspects of the essential Mycobacteriumtuberculosis MtrAB two-component regulatory signal transduction (2CRS) system have not been extensively investigated. We show by bacterial two-hybrid assay that the response regulator (RR) MtrA and the sensor kinase MtrB interact. We further demonstrate that divalent metal ions [Mg²+, Ca²+ or both] promote MtrB kinase autophosphorylation activity, but only Mg²+ promotes phosphotransfer to MtrA. Replacement of the conserved aspartic acid residues at positions 13 and 56 with alanine (D13A), glutamine (D56E) or asparagine (D56N) prevented MtrA phosphorylation, indicating that these residues are important for phosphorylation. The MtrA(D56E) and MtrA(D13A) proteins bound to the promoter of fbpB, the gene encoding antigen 85B protein, efficiently in the absence of phosphorylation, whereas MtrA(D56N) did not. We also show that M.tuberculosismtrA merodiploids overproducing MtrA(D13A), unlike cells overproducing wild-type MtrA, grow poorly in nutrient broth and show reduced expression of fbpB. These latter findings are reminiscent of a phenotype associated with MtrA overproduction during intramacrophage growth. Our results suggest that MtrA(D13A) behaves like a constitutively active response regulator and that further characterization of mtrA merodiploid strains will provide valuable clues to the MtrAB system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076548PMC
http://dx.doi.org/10.1016/j.plasmid.2011.01.002DOI Listing

Publication Analysis

Top Keywords

mtra
8
mtra merodiploid
8
merodiploid strains
8
nutrient broth
8
response regulator
8
mycobacterium tuberculosis
4
tuberculosis mtra
4
strains point
4
point mutations
4
mutations signal-receiving
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!