During the development of the nervous system, the migration of many cells and axons is guided by extracellular molecules. These molecules bind to receptors at the tips of the growth cones of migrating axons and trigger intracellular signaling to steer the axons along the correct trajectories. We have identified a novel mutant, enu-3 (enhancer of Unc), that enhances the motor neuron axon outgrowth defects observed in strains of Caenorhabditis elegans that lack either the UNC-5 receptor or its ligand UNC-6/Netrin. Specifically, the double-mutant strains have enhanced axonal outgrowth defects mainly in DB4, DB5 and DB6 motor neurons. enu-3 single mutants have weak motor neuron axon migration defects. Both outgrowth defects of double mutants and axon migration defects of enu-3 mutants were rescued by expression of the H04D03.1 gene product. ENU-3/H04D03.1 encodes a novel predicted putative trans-membrane protein of 204 amino acids. It is a member of a family of highly homologous proteins of previously unknown function in the C. elegans genome. ENU-3 is expressed in the PVT interneuron and is weakly expressed in many cell bodies along the ventral cord, including those of the DA and DB motor neurons. We conclude that ENU-3 is a novel C. elegans protein that affects both motor axon outgrowth and guidance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2011.01.024 | DOI Listing |
Neurobiol Dis
January 2025
KU Leuven - University of Leuven, Department of Neurosciences and Leuven Brain Institute (LBI), Leuven, Belgium; Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium. Electronic address:
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by the selective and progressive loss of motor neurons, leading to gradual paralysis and death within 2 to 5 years after diagnosis. The exact underlying pathogenic mechanism(s) remain elusive. This is particularly the case for sporadic ALS (sALS), representing 90 % of cases, as modelling a sporadic disease is extremely difficult.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
Primary neuronal culture and transient transfection offer a pair of crucial tools for neuroscience research, providing a controlled environment to study the behavior, function, and interactions of neurons in vitro. These cultures can be used to investigate fundamental aspects of neuronal development and plasticity, as well as disease mechanisms. There are numerous methods of transient transfection, such as electroporation, calcium phosphate precipitation, or cationic lipid transfection.
View Article and Find Full Text PDFIntroduction: Neurotrophic factors are widely known for their protective effect on spiral ganglion neurons (SGN) and the protection of these neurons is of great importance to optimize Cochlear Implants, which directly stimulate SGN in deaf patients. Previous studies have identified Cometin - also known as Meteroin-like - to be neuroprotective and beneficial for metabolic disorders. The aim of our study was to investigate the effects of different concentrations of recombinant human Cometin (hCometin) on SGN in regard to neuroprotection and neurite outgrowth and to evaluate its neurite guidance potential using a neurite outgrowth chamber.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Anatomy, College of Medicine, Inje University, Busan 47392, Republic of Korea.
Background/objectives: α-Synuclein (α-syn) protein is a major pathological agent of familial Parkinson's disease (PD), and its levels and aggregations determine neurotoxicity in PD pathogenesis. Although the pathophysiological functions of α-syn have been extensively studied, its biological functions remain elusive, and there are reports of wild-type (WT) α-syn and two missense mutations of α-syn (A30P and A53T) inducing protective neuritogenesis through neurite outgrowth. However, the function of another α-syn mutation, E46K, has not been fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!