Spinal muscular atrophy (SMA) is a devastating genetic motoneuron disease leading to infant death. No effective therapy is currently available. It has been suggested that β-lactam antibiotics such as ceftriaxone may offer neuroprotection in motoneuron diseases. Here, we investigate the therapeutic effect of ceftriaxone in a murine model of SMA. Treated animals present a modest, but significant ameliorated neuromuscular phenotype and increased survival, which correlate with protection of neuromuscular units. Whole gene expression profiling in treated mice demonstrates modifications in several genes including those involved in RNA metabolism toward wild-type. The neuroprotective effect seems to be mediated by multiple mechanisms that encompass the increase of the glutamate transporter Glt1, the transcription factor Nrf2, as well as SMN protein. This study provides the first evidence of a potential positive effect of this class of molecules in SMA. Further investigation of analogs with increased and more specific therapeutic effects warrants the development of useful therapies for SMA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2011.01.017DOI Listing

Publication Analysis

Top Keywords

spinal muscular
8
muscular atrophy
8
multiple mechanisms
8
beta-lactam antibiotic
4
antibiotic offers
4
offers neuroprotection
4
neuroprotection spinal
4
atrophy model
4
model multiple
4
mechanisms spinal
4

Similar Publications

Background: Most cases of spinal muscular atrophy (SMA) can be diagnosed by copy number analysis of survival motor neuron (SMN) 1. However, a small number of cases of SMA can only be diagnosed by sequencing analysis. We present a case of SMA diagnosed 7 years after the onset of symptoms.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a degenerative neuromuscular condition resulting from a homozygous deletion of the survival motor neuron 1 () gene in 95% of patients. A timely diagnosis via newborn screening (NBS) and initiating treatment before the onset of symptoms are critical for improving health outcomes in affected individuals. We carried out a screening test by quantitative PCR (qPCR) to amplify the exon seven of using dried blood spot (DBS) samples.

View Article and Find Full Text PDF

Tofersen and other antisense oligonucleotides in ALS.

Ther Adv Neurol Disord

January 2025

Department of Neurology, Ulm University, Ulm, Germany.

The advent of antisense oligonucleotide (ASO) therapies in neurodegenerative disorders is associated with enormous hope. Nusinersen treatment was a breakthrough intervention in the recessive disease spinal muscular atrophy, and superoxide dismutase 1 (SOD1) amyotrophic lateral sclerosis (ALS) seems to be the paradigm disease in dominant degenerative diseases. The results of treatment with the ASO tofersen in SOD1-ALS show that the drug has a convincing beneficial effect on ALS caused by SOD1 mutations, that preclinical studies in rodents predicted the therapeutic effect in the human disease, and that clinical efficacy is associated with a specific sequence of effects of the drug on mechanistic and degenerative biomarkers and, subsequently, functional outcomes such as weight stabilization and ALSFRS-R.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a progressive genetic neuromuscular condition affecting spinal motor neurons. The underlying cause of SMA is deletions or mutations in the SMN gene. It is classified into five variants based on age and clinical manifestations of the patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!