As an excellent biocompatible and biodegradable protein polymer, silk fibroin (SF) has found wide applications, particularly serving as therapeutic agent for tissue-engineering applications, on which both post-spin treatment and sterilization processing are crucial to drug-loaded matrices. To find a safe, effective and appropriate post-spin treatment and sterilization approach for drug-loaded biomaterial matrices is one of the major problems in the field of tissue engineering at present. In this work, a simple, safe and effective approach skillfully integrating post-spin treatment with sterilization processing was developed to drug-loaded SF nanofibrous matrices. Electrospun SF nanofibrous matrices from its aqueous solution were post-treated with 75% ethanol vapor. (13)C-NMR and WAXD analysis demonstrated that such post-spin treatment rendered the structure of SF nanofibrous matrices transform from the silk I form to the silk II form. Furthermore, biological assays suggested that as-treated SF nanofibrous matrices significantly promoted the development of murine connective tissue fibroblasts. Skillfully integrated with novel sterilization processing, 75% ethanol vapor treatment could be a potential approach to designing and fabricating diverse drug-loaded SF nanofibrous matrices serving as therapeutic agents for tissue-engineering applications in that it can effectively protect the drug from losing compared with traditional post-spin treatment and sterilization processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1163/092050610X552771 | DOI Listing |
Nanomedicine (Lond)
January 2025
Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, Republic of Korea.
Regen Biomater
December 2024
Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany.
Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors.
View Article and Find Full Text PDFMater Today Bio
December 2024
Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium.
Extensive research efforts are being directed towards identifying alternatives to autografts for the treatment of peripheral nerve injuries (PNIs) with engineered nerve conduits (NGCs) identified as having potential for PNI patients. These NGCs, however, may not fulfill the necessary criteria for a successful transplant, such as sufficient mechanical structural support and functionalization. To address the aforementioned limitations of NGCs, the present investigation explored the development of double cross-linked hydrogels (o-CSMA-E) that integrate the biocompatibility of porcine tendon extracellular matrix (ECM) with the antimicrobial and conductive properties of methacrylated quaternary chitosan.
View Article and Find Full Text PDFBiomater Adv
November 2024
Institute for Biomechanics, ETH Zurich, Gloriastrasse 37-39, 8092 Zurich, Switzerland.
Aging, trauma, pathology, and poor natural tissue regeneration are the leading causes of osteoarthritis (OA), an articular cartilage disease. Electrospun scaffolds have gained attention as potential matrices for the treatment of OA because of their high degree of ECM mimicry, which suits chondrocyte migration, adhesion, and proliferation. However, none of the products recently introduced in the market are nanofiber-based.
View Article and Find Full Text PDFFood Chem
February 2025
School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!