Protein-protein interactions control signaling, specific adhesion, and many other biological functions. The three-dimensional structures of the interfaces and bound ligand can be approached with transferred nuclear Overhauser effect spectroscopy NMR, which can be applied to much larger proteins than conventional NMR and requires less concentrated protein. However, it is not clear how accurately the structures of protein-bound peptides can be determined by transferred nuclear Overhauser effect spectroscopy. We studied the structure of a biotin mimetic peptide (FSHPQNT) bound to streptavidin, because the X-ray structure of the complex is available to 1.74 Å resolution, and we found that conditions could be adjusted so that the off-rates were fast enough for transferred nuclear Overhauser effect spectroscopy NMR. The off-rate was determined with (19)F NMR, using a para-fluoro-phenylalanine analog of the peptide. A new criterion for a lower limit on kinetic off-rate was found, which allowed accurate structure determination at a slower off-rate. Non-specific binding of the peptide to streptavidin was not significant, because biotin blocked the peptide transferred nuclear Overhauser effect spectroscopy. Protein mediation for the long-range peptide transferred nuclear Overhauser effect spectroscopy cross-peaks was corrected by a transferred nuclear Overhauser effect spectroscopy/ROESY averaging procedure. The protein-bound structure of the peptide was determined by transferred nuclear Overhauser effect spectroscopy constrained and simulated annealing. The structure deduced from the NMR was close to the X-ray structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115400 | PMC |
http://dx.doi.org/10.1111/j.1747-0285.2011.01096.x | DOI Listing |
Biomark Res
January 2025
Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, Taiwan.
Background: Up to 23% of breast cancer patients recurred within a decade after trastuzumab treatment. Conversely, one trial found that patients with low HER2 expression and metastatic breast cancer had a positive response to trastuzumab-deruxtecan (T-Dxd). This indicates that relying solely on HER2 as a single diagnostic marker to predict the efficacy of anti-HER2 drugs is insufficient.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:
Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O.Box 5003, NO-1432 Ås, Norway.
Numerical transport models are important tools for nuclear emergency decision makers in that they rapidly provide early predictions of dispersion of released radionuclides, which is key information to determine adequate emergency protective measures. They can also help us understand and describe environmental processes and can give a comprehensive assessment of transport and transfer of radionuclides in the environment. Transport of radionuclides in air and ocean is affected by a number of different physico-chemical processes.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
The molecular energy transfer is crucial for many different physicochemical processes. The efficiency of traditional resonance energy transfer relies on dipole-dipole distance between molecules and becomes negligible when the distance is larger than ∼10 nm, which is difficult to overcome. Cavity polariton, formed when placing molecules inside the cavity, is a promising way to surmount the distance limit.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.
The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)TeI, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl on its surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!