We have demonstrated a nanoengineered substrate composed of micropatterned silver nanoparticles to be used for the label-free mapping of adsorbed biomolecules. We utilized surface-enhanced Raman scattering (SERS) phenomenon to monitor the known bioanalytes, protein A and human immunoglobulin G (IgG). The SERS substrate was composed of a poly(alylamine hydrochloride) (PAH)/poly(styrenesulfonate) (PSS) layer-by-layer (LbL) nanocoating micropatterned with silver nanoparticles confined to microscopic stripes. Selective adsorption of biomacromolecules is facilitated by the amine-terminated LbL nanocoating, which prevents the surface adsorption of positively charged protein A across the surface except on the patterned regions containing negatively charged silver nanoparticles. Furthermore, adsorption of IgG on predetermined regions is facilitated by the selective binding of the Fc region of IgG to protein A. This label-free SERS approach provides accurate, selective, and fast detection of protein A and IgG solutions with a nanomolar concentration, down to below 1 nM for IgG in solution. This method could also be utilized for the facile detection of proteins in field conditions as well as in clinical, forensic, industrial, and environmental laboratories.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la104787wDOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
12
protein igg
8
substrate composed
8
micropatterned silver
8
lbl nanocoating
8
igg
6
protein
5
label-free raman
4
raman mapping
4
mapping surface
4

Similar Publications

This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom . Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of mycelia by 12.

View Article and Find Full Text PDF

Solid-State Precipitation of Silver Nanoparticles Nucleated during Al Anodizing: Mechanism and Antibacterial Properties.

ACS Appl Bio Mater

January 2025

Laboratório de Processos Eletroquímicos e Corrosão-ELETROCORR, Departamento de Metalurgia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil.

This study presents an innovative approach to creating antibacterial aluminum surfaces by combining the antibacterial properties of silver nanoparticles (Ag NPs) with the nanoarchitecture of anodized aluminum oxide in one step. An Al-Ag alloy containing 10 wt % Ag was synthesized and anodized in 0.3 M oxalic acid.

View Article and Find Full Text PDF

Glycan-Matchmade Multivalent Decoration of Enzyme Labels for Amplified Electrochemical Detection of Glycoproteins.

Anal Chem

January 2025

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.

Glycoproteins are of significant value to liquid biopsy of human diseases. Herein, we present a universal electrochemical platform for the amplified detection of glycoproteins, taking advantage of the glycan-matchmade multivalent decoration of enzyme labels for the enzymatic signal amplification. Briefly, the glycan-matchmade multivalent decoration involves two steps, i.

View Article and Find Full Text PDF

With the progress of modern technology and the diversification of societal demands, traditional materials with single properties can no longer meet the requirements of complex and constantly evolving application scenarios. To tackle intricate biomedical applications like disease diagnosis and treatment, scientists are focusing on exploring the design of novel multifunctional biomaterials that possess diverse activities. Bismuth titanate (BiTiO, BTO), which has multifunctionality and great application potential, unfortunately suffers from inadequate photocatalytic performance.

View Article and Find Full Text PDF

Electrical fires pose significant threats to the lives and property safety of people. Although utilizing coatings to impart conductivity and flame retardancy to materials is convenient and reliable, traditional layer-by-layer preparation methods have the limitations of cost, convenience and scalability. Therefore, a single-layer coating that simultaneously imparts excellent conductivity and flame retardancy to materials presents broader application prospects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!