Astrocytes are now considered as essential partners of neurons. In particular, they play important roles in glutamatergic transmission, including transmitter inactivation by uptake. Here, we investigated the organization of astroglia in the Nucleus Tractus Solitarii (NTS), a sensory nucleus located in the caudal medulla. Special attention was given to perisynaptic astroglial processes. Investigations were performed at the light and electron microscope levels, using immunodetection of glial glutamate transporters, stereological methods, and serial reconstruction. In the NTS, the main glutamate transporter expressed by astrocytes was GLT1. The volume fraction of astrocyte processes and the density of astrocyte membranes reached 15% and 2.8 μm(2) μm(-3) , respectively. In spite of the relative abundance of astrocyte processes, we found that NTS glutamatergic synapses were not entirely surrounded by glia. Measurements were performed on 43 reconstructed asymmetric junctions which were either single synapses (n = 22) or synapses involved in multisynaptic arrangements (n = 21). Single synapses had 58% of their perimeter contacted by astrocyte processes on average. In multisynaptic arrangement, glial coverage was restricted to the outer part of synaptic diameters and amounted to 50% of this outer part on average. Incomplete glial coverage of NTS synapses may allow glutamate to diffuse out of the synaptic cleft and to activate extrasynaptic receptors as well as receptors from neighboring synapses. Especially, in multisynaptic arrangements, the lack of intervening glia may favor functional coupling between individual contacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/glia.21135 | DOI Listing |
Cell Chem Biol
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge Cambridge CB2 0XY, UK. Electronic address:
Synaptic dysfunction is a primary hallmark of both Alzheimer's and Parkinson's disease, leading to cognitive and behavioral decline. While alpha-synuclein, beta-amyloid, and tau are involved in the physiological functioning of synapses, their pathological aggregation has been linked to synaptopathology. The methodology for studying the small-soluble protein aggregates formed by these proteins is limited.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Instituto de Biologia, Universidade Federal da Bahia, Salvador 40170-115, Brazil.
Background/objectives: Internalizing disorders, including depression and anxiety, are major contributors to the global burden of disease. While the genetic architecture of these disorders in adults has been extensively studied, their early-life genetic mechanisms remain underexplored, especially in non-European populations. This study investigated the genetic mechanisms underlying internalizing symptoms in a cohort of Latin American children.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Old Aberdeen AB24 3UE, UK.
Background/objectives: A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control.
Methods: We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level.
Elife
January 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China.
Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!