Aim: To investigate the involvement of microRNAs (miRNAs) in intrinsic drug resistance to hydroxycamptothecin (HCPT) of six gastric cancer cell lines (BGC-823, SGC-7901, MGC-803, HGC-27, NCI-N87, and AGS).
Methods: A sulforhodamine B (SRB) assay was used to analyze the sensitivity to HCPT of six gastric cancer cell lines. The miRNA and mRNA expression signatures in HCPT-resistant cell lines were then identified using DNA microarrays. Gene ontology and pathway analysis was conducted using GenMAPP2. A combined analysis was used to explore the relationship between the miRNAs and mRNAs.
Results: The sensitivity to HCPT was significantly different among the six cell lines. In the HCPT-resistant gastric cancer cells, the levels of 25 miRNAs were deregulated, including miR-196a, miR-200 family, miR-338, miR-126, miR-31, miR-98, let-7g, and miR-7. Their target genes were related to cancer development, progression and chemosensitivity. Moreover, 307 genes were differentially expressed in HCPT-resistant cell lines, including apoptosis-related genes (BAX, TIAL1), cell division-related genes (MCM2), cell adhesion- or migration-related genes (TIMP2, VSNL1) and checkpoint genes (RAD1). The combined analysis revealed 78 relation pairs between the miRNAs and mRNAs.
Conclusion: Hierarchical clustering showed that the miRNA and mRNA signatures in our results were informative for discriminating cell lines with different sensitivities to HCPT. However, there was slightly lower correlation between the expression patterns of the miRNA and those of the predicted target transcripts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009939 | PMC |
http://dx.doi.org/10.1038/aps.2010.204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!