"Licensed to kill": tyrosine dephosphorylation and Bak activation.

Cell Cycle

Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.

Published: February 2011

The genomes of multi-cellular organisms are under constant assault from a host of environmental agents. The efficient elimination of cells harbouring damage is essential to avoid the accumulation of deleterious changes that may promote tumorigenesis. Consequently, a complex and elaborate series of damage responses have evolved to either ensure that correct repair of the DNA has been carried out, or alternatively, to initiate programmes that result in the ablation of the damaged cell. Apoptosis is recognized as both a fast an efficient way of disposing of damaged or unwanted cells before they accumulate changes that may result in the acquisition of neoplastic autonomy. The mitochondrial apoptotic pathway relies upon two effector proteins of the Bcl2 family, Bax and Bak, that when activated form pores in the outer mitochondrial membrane that release cytochrome c and other apoptogenic factors. We have recently shown that the initiation of Bak activation is controlled by dephosphorylation. In particular, we found that a specific tyrosine dephosphorylation was required for Bak activation to proceed, and that tyrosine phosphatases may serve to integrate apoptotic signals that culminate in Bak dephosphorylation. Here, we discuss these findings and present additional data underlining the importance of dephosphorylation in the Bak activation process, and how the modulation of Bak phosphorylation status may be modified to enhance cell killing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174003PMC
http://dx.doi.org/10.4161/cc.10.4.14793DOI Listing

Publication Analysis

Top Keywords

bak activation
16
tyrosine dephosphorylation
8
dephosphorylation bak
8
bak
7
dephosphorylation
5
"licensed kill"
4
kill" tyrosine
4
activation
4
activation genomes
4
genomes multi-cellular
4

Similar Publications

Hemodialysis and bioartificial kidney (BAK), which mimic both physical and biological functions, can significantly impact chronic kidney disease (CKD) patients. Here we report on Hollow fiber membranes (HFMs) with enhanced separation of uremic toxins along with enhanced hemocompatibility and biocompatibility that also promote the growth of kidney cells. The improvement arises from the addition of titanium dioxide (0.

View Article and Find Full Text PDF

Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing.

Expert Opin Drug Deliv

January 2025

Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.

Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, chimericantigen receptor T  (CAR T) celltherapies and protein replacement.  mRNAis large, charged, and easily degraded by nucleases.

View Article and Find Full Text PDF

Residual Nitrite, Nitrate, and Volatile N-Nitrosamines in Organic and Conventional Ham and Salami Products.

Foods

January 2025

Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.

Nitrite and nitrate in meat products may be perceived negatively by consumers. These compounds can react to form carcinogenic volatile N-nitrosamines. "Nitrite-free" (i.

View Article and Find Full Text PDF

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Transcriptome of capsular contracture around breast implants mimics allograft rejection: a matched case-control study.

Plast Reconstr Surg

December 2024

Copenhagen University Hospital, Department of Plastic Surgery and Burns Treatment, Rigshospitalet, Copenhagen, Denmark.

Background: Capsular contracture is a frequent and severe complication following breast implant surgery. Although several theories on the pathophysiology exist, the exact molecular mechanisms remain unclear. This study aimed to identify the specific genes, signaling pathways, and immune cells associated with capsular contracture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!