The equine herpesviruses are major infectious pathogens that threaten equine health. Equine herpesvirus 4 (EHV-4) is an important equine pathogen that causes respiratory tract disease, known as rhinopneumonitis, among horses worldwide. EHV-4 genome manipulation with subsequent understanding of the viral gene functions has always been difficult due to the limited number of susceptible cell lines and the absence of small-animal models of the infection. Efficient generation of mutants of EHV-4 would significantly contribute to the rapid and accurate characterization of the viral genes. This problem has been solved recently by the cloning of the genome of EHV-4 as a stable and infectious bacterial artificial chromosome (BAC) without any deletions of the viral genes. Very low copy BAC vectors are the mainstay of present genomic research because of the high stability of inserted clones and the possibility of mutating any gene target in a relatively short time. Manipulation of EHV-4 genome is now feasible using the power of BAC technology, and should aid greatly in assessing the role of viral genes in the virus-host interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2011.01.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!