We have examined the histogenesis of the olfactory system during turbot development using histological and immunohistochemical methods. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was used to detect dividing cells, whereas calretinin (CR) immunohistochemistry was used to distinguish some neuronal components of the olfactory system. Around hatching, the olfactory placode of embryos transforms into an olfactory pit, which enlarges progressively during development. In metamorphic turbots, the right olfactory organ moves to the tip of the head. Each olfactory chamber opens to the external medium by two nostrils and accessory nasal sacs develop during metamorphosis. The order of birth of olfactory receptor cells in the sensory epithelium follows the pattern of most teleosts: ciliated cells differentiate prior to microvillous cells in turbot larvae, and crypt cells are generated during metamorphosis. Axons of olfactory sensory neurons reach the rostral forebrain by hatching, and calretinin-immunoreactive (CR-ir) glomerular fields were apparent during the subsequent larval development. During metamorphosis olfactory bulbs become strongly distorted by head torsion and glomeruli acquire asymmetric organization. The spatio-temporal course of proliferation in the olfactory system reveals changes in the distribution of dividing cells in the sensory epithelium throughout the developmental period investigated. In the olfactory bulb, proliferative activity becomes restricted to the ventral periventricular zone in turbot larvae, as well as in metamorphic specimens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchemneu.2011.01.003 | DOI Listing |
Front Zool
January 2025
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China.
Background: Odorant binding proteins (OBPs) initiate the process of odorant perception. Numerous investigations have demonstrated that OBPs bind a broad variety of chemicals and are more likely to carry pheromones or odor molecules with high binding affinities. However, few studies have investigated its effects on insect behavior.
View Article and Find Full Text PDFACS Nano
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
Human sweat has the potential to be sufficiently utilized for noninvasive monitoring. Given the complexity of sweat secretion, the sensitivity and selectivity of sweat monitoring should be further improved. Here, we developed an olfactory-inspired separation-sensing nanochannel-based electronic for sensitive and selective sweat monitoring, which was simultaneously endowed with interferent separation and target detection performances.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand; Nakhornsawan campus, Mahidol University, Nakhonsawan, Thailand. Electronic address:
Our previous studies revealed a mating attractant or possibly a pheromone released from molting reproductive mature female prawns, Macrobrachium rosenbergii, stimulates the expression of insulin-like androgenic gland hormones in a co-culture system. The released attractant is perceived by olfactory receptors with setae located on the short lateral antennules (slAn), which connect to the olfactory neuropil in the central nervous system (CNS) of male prawns. This neural signaling propagating through the CNS is mediated by at least four neuropeptides, namely neuropeptide F (NPF), short NPF (sNPF), tachykinin (TK), and allatostatin-A (ATS-A) whose transcripts have been detected in the present study.
View Article and Find Full Text PDFACS Nano
January 2025
Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
The synthesis of covalent organic frameworks (COFs) with excellent luminescent properties and their effective application in the field of bionic sensing remain a formidable challenge. Herein, a series of COFs with different numbers of hydroxyl groups are successfully synthesized, and the number of hydroxyl groups on the benzene-1,3,5-tricarbaldehyde (BTA) linker influences the properties of the final COFs. The COF (HHBTA-OH) prepared with hydrazine hydrate (HH) and BTA containing one hydroxyl group as the ligands exhibits the best fluorescent performance.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China. Electronic address:
Background: Food safety has attracted increasing attention in recent years. Harmful gases often produced during food storage have devastating effects on human health and ecosystems, and identifying and detecting them is essential. To date, many traditional methods have been used to monitor the freshness of food products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!