AI Article Synopsis

  • PON1 is crucial for breaking down harmful organophosphate pesticides, and variations in the PON1 gene affect its activity and expression.
  • In a study of 230 people, including 115 exposed workers and 115 healthy controls, workers showed significantly lower PON1 activity compared to controls, but no meaningful differences in PON1 gene variations between the two groups.
  • Workers experienced higher DNA damage linked to lower PON1 activity, particularly in those with specific genotypes associated with reduced enzyme function.

Article Abstract

Human paraoxonase 1 (PON1) is a lipoprotein-associated enzyme involved in the detoxification of organophosphate pesticides (OPs) by hydrolyzing the bioactive oxons. Polymorphisms of the PON1 gene are responsible for variation in the expression and catalytic activity of PON1 enzyme. In the present study, we have determined (a) the prevalence of two common PON1 polymorphisms, (b) the activity of PON1 and acetylcholinesterase enzymes, and (c) the influence of PON1 genotypes and phenotypes variation on DNA damage in workers exposed to OPs. We examined 230 subjects including 115 workers exposed to OPs and an equal number of normal healthy controls. The results revealed that PON1 activity toward paraoxon (179.19±39.36 vs. 241.52±42.32nmol/min/ml in controls) and phenylacetate (112.74±17.37 vs. 134.28±25.49μmol/min/ml in controls) was significantly lower in workers than in control subjects (p<0.001). No significant difference was observed in the distribution of genotypes and allelic frequencies of PON1(192)QR (Gln/Arg) and PON1(55)LM (Leu/Met) in workers and control subjects (p>0.05). The PON1 activity toward paraoxonase was found to be significantly higher in the R/R (Arg/Arg) genotypes than Q/R (Gln/Arg) and lowest in Q/Q (Gln/Gln) genotypes in both workers and control subjects (p<0.001). For PON1(55)LM (Leu/Met), PON1 activity toward paraoxonase was observed to be higher in individuals with L/L (Leu/Leu) genotypes and lowest in individuals with M/M (Met/Met) genotypes in both groups (p<0.001). No influence of PON1 genotypes and phenotypes was seen on the activity of acetylcholinesterase and arylesterase. The DNA damage was observed to be significantly higher in workers than in control subjects (p<0.05). Further, the individuals who showed least paraoxonase activity i.e., those with (Q/Q [Gln/Gln] and M/M [Met/Met]) genotypes showed significantly higher DNA damage compared to other isoforms in workers exposed to OPs (p<0.05). The results indicate that the individuals with PON1 Q/Q and M/M genotypes are more susceptible toward genotoxicity. In conclusion, the study suggests wide variation in enzyme activities and DNA damage due to polymorphisms in PON1 gene, which might have an important role in the identification of individual risk factors in workers occupationally exposed to OPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2011.01.014DOI Listing

Publication Analysis

Top Keywords

dna damage
8
damage workers
8
organophosphate pesticides
8
pon1
8
activity pon1
8
workers exposed
8
exposed ops
8
pon1 activity
8
workers control
8
control subjects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!