Aminoglycosides are among the most potent antimicrobials to eradicate Pseudomonas aeruginosa. However, the emergence of resistance has clearly led to a shortage of treatment options, especially for critically ill patients. In the search for new antibiotics, we have synthesized derivatives of the small aminoglycoside, neamine. The amphiphilic aminoglycoside 3',4',6-tri-2-naphtylmethylene neamine (3',4',6-tri-2NM neamine) has appeared to be active against sensitive and resistant P. aeruginosa strains as well as Staphylococcus aureus strains (Baussanne et al., 2010). To understand the molecular mechanism involved, we determined the ability of 3',4',6-tri-2NM neamine to alter the protein synthesis and to interact with the bacterial membranes of P. aeruginosa or models mimicking these membranes. Using atomic force microscopy, we observed a decrease of P. aeruginosa cell thickness. In models of bacterial lipid membranes, we showed a lipid membrane permeabilization in agreement with the deep insertion of 3',4',6-tri-2NM neamine within lipid bilayer as predicted by modeling. This new amphiphilic aminoglycoside bound to lipopolysaccharides and induced P. aeruginosa membrane depolarization. All these effects were compared to those obtained with neamine, the disubstituted neamine derivative (3',6-di-2NM neamine), conventional aminoglycosides (neomycin B and gentamicin) as well as to compounds acting on lipid bilayers like colistin and chlorhexidine. All together, the data showed that naphthylmethyl neamine derivatives target the membrane of P. aeruginosa. This should offer promising prospects in the search for new antibacterials against drug- or biocide-resistant strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2011.01.014 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
Imaging-guided chemo-photothermal combination therapy (chemo-PTT) is recognized for its synergistic therapeutic effects, reduced side effects, and minimal drug resistance, while the development of such theranostics has been hampered by poor imaging and therapy performance and tedious formulation. Herein, we introduce an all-in-one "add-on" module () for the convenient construction of doxorubicin (DOX)-loaded nanoparticles (DOX@BBT) and efficient second near-infrared (NIR-II) fluorescence imaging (FLI)-guided synergistic chemo-PTT of drug-resistant lung cancer. The delicate Janus amphiphilic structure of enables multifunctionality, including NIR-II FLI, aggregation-induced emission (AIE) characteristics, moderate photothermal conversion efficiency (PCE), excellent photostability, and polyethylene glycolation (PEGylation), which could improve the NIR-II FLI and PTT performance, relieve the complexity in theranostics, and enable high reproducibility of the multifunctional theranostics.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China.
Using the coordination bonds between transition metal atoms and electron-rich functional groups, we synthesized two kinds of micelle-like nanoparticles. Using magnetic FeO as the core, poly(methyl methacrylate) (PMMA) and poly(acrylic acid) (PAA) brushes were grafted via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET-ATRP), which formed micelle-like magnetic nanoparticles FeO/PAA-PMMA with a hydrophobic outer layer and FeO/PMMA-PAA with a hydrophilic outer layer. Both the micelle-like nanoparticles had amphiphilic properties and can be used to load hydrophilic or hydrophobic drugs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Lipid Utilization Laboratories - Lipids/Materials Chemistry Group, Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
In this study, we introduce a protein-polymer bioconjugate comprising bovine serum albumin (BSA) and a lipid-based thermoresponsive block copolymer. These amphiphilic BSA-polymer conjugates can autonomously be organized into vesicular compartments for codelivery of glucose oxidase (GOx) and doxorubicin (DOX), demonstrating high drug loading content and remarkable antitumor activity via synergistic cancer therapy combining chemo-starvation strategies. Through the incorporation of a hydrophilic BSA block, the lower critical solution temperature (LCST) of the bioconjugates is tuned to around 40 °C, facilitating their targeted drug delivery to tumor cells.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States.
Despite the advent of novel therapeutics, the efficient delivery of antineoplastic drugs remains a challenge. Biodegradable polymeric micelles represent a promising frontier by offering enhanced drug solubility, tumor targeting, and controlled release profiles. However, the underlying dynamics governing the drug encapsulation and solvation within these micellar structures is still vague and poorly understood.
View Article and Find Full Text PDFACS Nano
November 2024
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore.
Ferroptosis can induce cell death that leverages Fe-triggered Fenton reactions within living organisms, leading to an excessive accumulation of lipid peroxides (LPOs) and inducing cell death. Ferroptosis can effectively circumvent the inevitable drug resistance encountered with traditional apoptotic therapies. However, several issues remain in the clinical application of ferroptosis anticancer therapy, primarily due to the poor efficiency of intracellular Fenton reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!