This review focuses on the potential role of site- and event-selective adenosinergic drugs in the treatment of cardiovascular diseases. Adenosine is released from the myocardium and vessels in response to various forms of stress and acts on four receptor subtypes (A1, A2A, A2B and A3). Adenosine is an important endogenous substance with important homeostatic activity in the regulation of cardiac function and circulation. Adenosine receptors are also involved in the modulation of various cellular events playing crucial role in physiological and pathological processes of the cardiovascular system. These actions are associated to activation of distinct adenosine receptor subtypes, therefore drugs targeting specific adenosine receptors might be promising therapeutic tools in treatment of several disorders including various forms of cardiac arrhythmia, myocardial ischemia-reperfusion injury, angina pectoris, chronic heart failure, etc. Recently, in addition to subtype-specific adenosine receptor agonists and antagonists, a number of substances that enhance adenosine receptor activation locally at the site where the release of endogenous adenosine is the most intensive have been developed. Thus global actions of adenosine receptor agonists and antagonists, as well as desensitization or down-regulation following chronic administration of these orthosteric compounds can possibly be avoided. We discuss the chemical, pharmacological and clinical features of these compounds: (1) inhibitors of membrane adenosine transporters (NBTI, dipyridamole), (2) inhibitors of adenosine deaminase (coformycin, EHNA), (3) inhibitors of adenosine kinase (tubercidin, aristeromycin), (4) inhibitors of AMP deaminase (GP3269), (5) activators of 5'-nucleotidase (methotrexate), (6) adenosine regulators (acadesine) and (7) allosteric adenosine receptor modulators (PD81723, LUF6000). The development of this type of substances might offer a novel therapeutic approach for treating cardiovascular diseases in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/092986711795029753 | DOI Listing |
Anal Chem
January 2025
Department of Anesthesiology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku 113-8510, Tokyo, Japan.
The hemostatic function of platelets is complementary to blood coagulation. However, traditional platelet function tests have primarily focused on measuring platelet aggregation, reducing their clinical effectiveness for antiplatelet drug monitoring. To address this limitation, we propose a new test principle that evaluates platelet function and the effects of antiplatelet drugs through blood coagulation reactions.
View Article and Find Full Text PDFJ Lipid Res
January 2025
State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Electronic address:
Dysfunctional cholesterol metabolism is highly prevalent in patients with hyperuricemia. Both uric acid and cholesterol are independent risk factors for atherosclerosis, contributing to an increased incidence of cardiovascular disease in hyperuricemia. Investigating the pathological mechanisms underlying cholesterol metabolism dysfunction in hyperuricemia is essential.
View Article and Find Full Text PDFDev Reprod
December 2024
Carbon-Neutral Resources Research Center, Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea.
Lutropin/choriogonadotropin receptor (LH/CGR) is a member of the G protein-coupled receptor superfamily. LH/CGRs in fish and mammalian species have been reported to contain naturally occurring, constitutively activating, and inactivating mutations in highly conserved regions. The present study was designed to determine the functional aspect of eel LH/CGR signal transduction.
View Article and Find Full Text PDFImmunol Rev
March 2025
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Since their first description in 2008, T-bet+ B cells have emerged as a clinically important B cell subset. Now commonly known as ABCs (Age-associated B Cells), they are uniquely characterized by their expression of the transcription factor T-bet. Indeed, this singular factor defines this B cell subset.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!