Molecular dynamics study and electronic structure evolution of a DNA duplex d(CCCGATCGGG)2.

J Phys Chem B

Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata 700032, India.

Published: March 2011

The molecular dynamics simulations and electronic structure evolution of a A-DNA decamer, d(CCCGATCGGG)(2), in the presence and absence of [Co(NH(3))(6)](3+) ions have been investigated. In both cases, the results of 2.5 ns MD simulation indicate a A-DNA→B-DNA transition. Ab initio DFT calculations were performed on a series of conformations representing the A→B transitions to reveal the dynamical behavior of the electronic structure of the decamer. The results suggest that the conformational parameters as well as the surrounding environment have no direct correlation with the electronic structures. Instead, the thermal fluctuations play an important role in the electronic structure of the present DNA system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp109779vDOI Listing

Publication Analysis

Top Keywords

electronic structure
16
molecular dynamics
8
structure evolution
8
electronic
5
dynamics study
4
study electronic
4
structure
4
evolution dna
4
dna duplex
4
duplex dcccgatcggg2
4

Similar Publications

Background: Sodium vanadium fluorophosphate is a sodium ion superconductor material with high sodium ion mobility and excellent cyclic stability, making it a promising cathode material for sodium-ion batteries. However, most of the literature and patents report preparation through traditional methods, which involve complex processes, large particle sizes, and low electronic conductivity, thereby limiting development progress.

Objective: Aiming at the limitation of high cost and poor performance of vanadium sodium fluorophosphate cathode material, the low temperature and high-efficiency nano preparation technology was developed.

View Article and Find Full Text PDF

The discovery of unconventional superconductivity often triggers significant interest in associated electronic and structural symmetry breaking phenomena. For the infinite-layer nickelates, structural allotropes are investigated intensively. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO ( ≈ 0) induces a giant superlattice structure.

View Article and Find Full Text PDF

Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent.

View Article and Find Full Text PDF

The effective S-scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g-C3N4 were modulated through meticulous polymerization of self-assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in-situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces.

View Article and Find Full Text PDF

A semi-automated workflow relying on atomic-scale modelling is introduced to explore and understand the yet-unsolved structure of the crystalline AsTe material, recently obtained from crystallization of the parent AsTe glass, which shows promising properties for thermoelectric applications. The seemingly complex crystal structure of AsTe is investigated with density functional theory, from the stand point of As/Te disorder, in a structural template derived from elemental-Te (Te), following experimental findings from combined X-ray total scattering and diffraction. Our workflow includes a combinatorial structure generation step followed by successive structure selection and relaxation steps with progressively-increasing accuracy levels and a multi-criterion evaluation procedure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!