L-γ-Carboxyglutamic acid (Gla) is an uncommon amino acid that binds avidly to mineral surfaces and metal ions. Herein, we report the synthesis of N-α-Fmoc-L-γ-carboxyglutamic acid γ,γ'-tert-butyl ester (Fmoc-Gla(O(t)Bu)(2)-OH), a suitably protected analogue for Fmoc-based solid-phase peptide synthesis. The residue was synthesized using a novel chiral Cu(II) complex, whose structure-based design was inspired by the blue copper protein rusticyanin. The five-coordinate complex is formed by Shiff base formation between glycine and the novel ligand (S)-2-(N-(2-methylthio)benzylprolyl)aminobenzophenone in the presence of copper. Michael addition of di-tert-butyl methylenemalonate to the α-carbon of the glycine portion of the complex occurs in a diastereoselective fashion. The resulting (S,S)-complex diastereomer can be easily purified by chromatography. Metal complex decomposition followed by Fmoc protection affords the enantiomerically pure amino acid. With the use of this novel chiral complex, the asymmetric synthesis of Fmoc-Gla(O(t)Bu)(2)-OH was completed in nine steps from thiosalicylic acid in 14.5% overall yield.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488861PMC
http://dx.doi.org/10.1021/jo101940kDOI Listing

Publication Analysis

Top Keywords

cuii complex
8
amino acid
8
novel chiral
8
complex
6
acid
6
enhanced stereoselectivity
4
stereoselectivity cuii
4
complex chiral
4
chiral auxiliary
4
synthesis
4

Similar Publications

-β, β-β' trifused porphyrins incorporating two distinct active methylene groups (MN = malononitrile and IND = 1,3-indanedione) and their corresponding metal complexes with Cu(II) and Zn(II) have been synthesized with good to excellent yields and characterized by various spectroscopic techniques and spectrometric methods. Single crystal X-ray analysis of the Zn(II) complex ZnTFPMB(MN) (where TFP = trifused porphyrin and MB = mono benzo) revealed a nonplanar 'armchair' type conformation with a twist angle of 24.10°.

View Article and Find Full Text PDF

A Redox-Active Copper Complex for Orthogonal Detection of Homocysteine Involving Fluorescence and Electrochemical Techniques.

Small

January 2025

Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India.

The present work reports the synthesis, characterization, and excited state photo-physical studies of two copper(II) compounds, 1 & 2, which show interference-free emission with homocysteine (Hcy). Cu(II) complexes offer an orthogonal detection strategy involving fluorescence and electrochemical methods, paving the way for improved point-of-care diagnostics and early cardiovascular diseases intervention. The reduction-induced emission enhancement (RIEE) of Cu complexes facilitates the fluorescence measurement of Hcy at physiological pH.

View Article and Find Full Text PDF

Synthesis, crystal structure, characterization and antimicrobial activities of ternary chiral mononuclear Schiff base copper(II) complexes.

J Trace Elem Med Biol

January 2025

Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India. Electronic address:

[CuL(tmen)] is a sequence of four ternary mononuclear Schiff base copper(II) complexes that are derived from L-valine, suitable 5'-substituted-2'-hydroxyacetophenones (where the substituents are -Cl for L, -Me for L, -OMe for L, and -H for L), and tmen (where tmen-N,N,N',N' tetramethyl ethylenediamine). Without isolating the Schiff base ligand or producing any other intermediate products, all of the complexes were synthesised. These compounds were identified using elemental analysis, molar conductance, UV-Vis, FTIR, EPR, VSM-RT, and CD spectra.

View Article and Find Full Text PDF

Context: Cation-π and cation-lone pair interactions between 3d-metal (II) ions [Fe(II), Co(II), Ni(II) and Cu(II)] and furan are explored in the formation of 1:1 and 1:2 type complexes. Both cation-π (IE = -192.27 to -312.

View Article and Find Full Text PDF

Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!