We reported a strategy for the synthesis of fused heterocyclic compounds benzo[e]indolo[1,2-a]pyrrolo/pyrido[2,1-c][1,4]diazepine-3,9-diones via an AgSbF(6)/gold-complex catalyzed one-pot cascade transformation. The strategy is tolerant of a broad range of substrates and affords a series of intriguing fused diazepinedione heterocycles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo101727rDOI Listing

Publication Analysis

Top Keywords

transformation strategy
8
silver- gold-mediated
4
gold-mediated domino
4
domino transformation
4
strategy synthesizing
4
synthesizing benzo[e]indolo[12-a]pyrrolo/pyrido[21-c][14]diazepine-39-diones
4
benzo[e]indolo[12-a]pyrrolo/pyrido[21-c][14]diazepine-39-diones reported
4
reported strategy
4
strategy synthesis
4
synthesis fused
4

Similar Publications

Construction of Supramolecular Polymer Network Elastomers Based on Pillar[5]arene/Alkyl Chain Host-Guest Interactions.

ACS Macro Lett

January 2025

Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

As a special kind of supramolecular compound with many favorable properties, pillar[]arene-based supramolecular polymer networks (SPNs) show potential application in many fields. Although we have come a long way using pillar[]arene to prepare SPNs and construct a series of smart materials, it remains a challenge to enhance the mechanical strength of pillar[]arene-based SPNs. To address this issue, a new supramolecular regulation strategy was developed, which could precisely control the preparation of pillar[]arene-based SPN materials with excellent mechanical properties by adjusting the polymer network structures.

View Article and Find Full Text PDF

Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.

View Article and Find Full Text PDF

Automatic Parking Trajectory Planning Based on Warm Start Nonlinear Dynamic Optimization.

Sensors (Basel)

December 2024

Xi'an Aerospace Chemical Propulsion Co., Ltd., Xi'an 710089, China.

In this paper, we propose an optimal parking path planning method based on numerical solving, which leverages the concept of the distance between convex sets. The obstacle avoidance constraints were transformed into continuous, smooth nonlinear constraints using the Lagrange dual function. This approach enables the determination of a globally optimal parking path while satisfying vehicular kinematic constraints.

View Article and Find Full Text PDF

Richter transformation (RT) is a rare albeit devastating complication of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL). RT is defined as an aggressive lymphoma, typically diffuse large B-cell lymphoma, in the setting of CLL. A clonal relationship to the preceding CLL clone is detected in the majority of RT cases and confers more aggressive clinicopathologic kinetics, resistance to standard chemoimmunotherapy regimens, and inferior survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!