Ninety articles on electrical properties of acupoints and 38 closely related articles with the time raged from 1950s' till present were retrieved and studied from Pubmed, CNKI and VIP databases. Conclusions indicate that most of the low-resistance points or high potential points of the skin are in accordance with acupoints. However, not every acupoint shows the property of low-resistance or high potential feature. The electrical properties of acupoints vary with the physiological and pathological changes of the human body. And the electrical properties of acupoints which share the same name on the affected meridians located symmetrically on bilateral sides of the body were in a condition of imbalance. However, the result of measurement can be affected by the type of apparatus, intensity, size and number of the electrode etc. Therefore, the future study should be focused on the reaction laws of electrical properties of acupoints under physiological and pathological conditions through selection of different resistance measurement apparatus and strictly control of the impacting factors during the researching process.
Download full-text PDF |
Source |
---|
Chempluschem
January 2025
Jiangsu Agri-animal Husbandry Vocational College, Department of Pharmacy, CHINA.
With enrichment of tetracycline (TC) in ecosystems, its accurate detection has become a major concern. Noble-metal nano-particles have attracted great interest as potential materials for sensing applications because of their remarkable electrical properties and adaptability. Herein, a novel electro-chemical detection technique based on carbon nano-tubes (CNTs) as the support material is developed to detect TC with high precision.
View Article and Find Full Text PDFNat Commun
January 2025
National Key Laboratory of Uranium Resource Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang, 330013, China.
Piezoelectric catalysis possesses the potential to convert ocean wave energy into and holds broad prospects for extracting uranium from seawater. Herein, the Z-type ZnO@COF heterostructure composite with excellent piezoelectric properties was synthesized through in situ growth of covalent organic frameworks (COFs) on the surface of ZnO and used for efficient uranium extraction. The designed COFs shell enables ZnO with stability, abundant active sites and high-speed electron transport channels.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Automation and Robotics, CSIC-Universidad Politécnica de Madrid, Arganda del Rey, Madrid, 28500, Spain.
Aluminium and its alloys, especially Al6061, have gathered significant interest among researchers due to its less density, great durability, and high strength. Due to their lightweight properties, the precise machining of these alloys can become expensive through conventional machining operations for intricate products. Therefore, non-traditional machining such as electric discharge machining (EDM) can potentially be opted for the cutting of Al6061.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
Thermoelectric (TE) performance in materials is often constrained by the strong coupling between carrier and phonon transport, necessitating trade-offs between electrical and thermal properties that limit improvements in the figure of merit (). Herein, a novel strategy is proposed to achieve simultaneous energy filtering and enhanced phonon scattering, effectively optimizing the TE properties of CoSb-based skutterudites. By introducing CuTe nanoprecipitates into the YbCoSb matrix, interfacial barriers are formed, which selectively filter low-energy charge carriers, significantly improving the Seebeck coefficient while maintaining high carrier mobility.
View Article and Find Full Text PDFISA Trans
January 2025
Institute of Artificial Intelligence and Future Networks, Beijing Normal University at Zhuhai, Zhuhai, China; BNU-HKBU United International College Tangjiawan, Rd. JinTong 2000#, Zhuhai, China. Electronic address:
In this paper, a novel recursive hierarchical parametric identification method based on initial value optimization is proposed for Wiener-Hammerstein systems subject to stochastic measurement noise. By transforming the traditional Wiener-Hammerstein system model into a generalized form, the system model parameters are uniquely expressed for estimation. To avoid cross-coupling between estimating block-oriented model parameters, a hierarchical identification algorithm is presented by dividing the parameter vector into two subvectors containing the coupled and uncoupled terms for estimation, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!