Modularity in total hip replacement offers advantages with regard to biomechanical adjustments and leg lengths. Recently, modular femoral necks were introduced as an added advantage to head modularity permitting further adjustments in femoral version as well as offset and ease of revision. Currently, most necks are made of Ti6Al4V for which cases of in vivo fractures and inseparable neck-stem junctions have been reported. Therefore, we investigated CoCrMo head-Ti6Al4V stem hip replacements with necks made of CoCrMo as an alternative to Ti6Al4V. We compared the two materials with respect to (1) compressive load bearing capacity; (2) fatigue durability; and (3) component distraction. We performed in vitro fatigue-pull-off, microscopy, fatigue durability and compression investigations. The CoCrMo neck showed a load bearing capacity of 18 kN, 38% higher than 13 kN for the Ti6Al4V neck. A fatigue load of 11.2 kN for 1 million cycle failure was achieved with CoCrMo translating into nearly 1000 times longer fatigue life compared to Ti6Al4V necks. The neck-stem distraction force showed large statistical variation and was similar for both neck materials. Overall, the results suggest a superiority of CoCrMo over Ti6Al4V as neck material with regard to mechanical behavior. However, the corrosion behavior was not appropriately assessed and necessitates additional investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.31794 | DOI Listing |
J Funct Biomater
January 2025
Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland.
This study focuses on the development and evaluation of the OrthoNail hybrid intramedullary implant for lower limb lengthening in patients requiring significant skeletal reconstruction. The implant addresses the challenges in load-bearing during rehabilitation, providing a robust solution that is capable of supporting physiological loads. Mechanical tests, including axial compression, tension, torsion, and 3,4-point bending, determined the implant's load capacity and fatigue resistance, while finite element analysis assessed stress distributions in bone tissue and around screw holes during single-leg stance, with boundary conditions derived from Orthoload database data.
View Article and Find Full Text PDFHeliyon
January 2025
University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, Rua Luís Reis Santos, 3030-788, Coimbra, Portugal.
Recent advancements in aerospace industry demand intricate aero-engine parts, leading to the increased use of titanium alloys, particularly Ti-17, due to its high strength, thermal stability, and corrosion resistance. However, its low thermal conductivity and tool wear tendency pose significant machining challenges, impacting surface integrity, fatigue life, and overall component performance. This study investigates the Wire Electrical Discharge Cutting (WEDC) process, revealing that the mechanism behind improved surface integrity lies in the controlled thermal input, which minimizes phase transformations and reduces residual stresses.
View Article and Find Full Text PDFAm J Hematol
January 2025
Hematology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Current treatments for persistent or chronic immune thrombocytopenia (ITP) are limited by inadequate response, toxicity, and impaired quality of life. The Bruton tyrosine kinase inhibitor rilzabrutinib was evaluated to further characterize safety and durability of platelet response. LUNA2 Part B is a multicenter, phase 1/2 study in adults with ITP (≥ 3 months duration, platelet count < 30 × 10/L) who failed ≥ 1 ITP therapy (NCT03395210, EudraCT 2017-004012-19).
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China.
Recent advances in drug design and compound synthesis have highlighted the increasing need for effective methods of toxicity evaluation. A specialized force sensor, known as the light wavelength-encoded "Chinese guzheng" is developed. This innovative sensor is equipped with optical fiber strings and utilizes a wavelength-encoded fiber Bragg grating (FBG) that is chemically etched to reduce its diameter.
View Article and Find Full Text PDFSci Robot
January 2025
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Aerial insects are exceptionally agile and precise owing to their small size and fast neuromotor control. They perform impressive acrobatic maneuvers when evading predators, recovering from wind gust, or landing on moving objects. Flapping-wing propulsion is advantageous for flight agility because it can generate large changes in instantaneous forces and torques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!