Long-term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal.

Cytometry A

Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, Cardiff CF144XN, United Kingdom.

Published: October 2010

The monitoring of cells labeled with quantum dot endosome-targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time-series flow cytometry in conjunction with a stochastic numerical simulation to provide a means to describe the proliferative features and quantum dot inheritance over multiple generations of a human tumor population. However, the core challenge for long-term tracking where the original quantum dot fluorescence signal over time becomes redistributed across a greater cell number requires accountability of background fluorescence in the simulation. By including an autofluorescence component, we are able to continue even when this signal predominates (i.e., >80% of the total signal) and obtain valid readouts of the proliferative system. We determine the robustness of the technique by tracking a human osteosarcoma cell population over 8 days and discuss the accuracy and certainty of the model parameters obtained. This systems biology approach provides insight into both cell heterogeneity and division dynamics within the population and furthermore informs on the lineage history of its members.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.20936DOI Listing

Publication Analysis

Top Keywords

quantum dot
20
quantum
5
dot
5
signal
5
long-term time
4
time series
4
series analysis
4
analysis quantum
4
dot encoded
4
encoded cells
4

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

Application of biomass carbon dots in food packaging.

Environ Sci Pollut Res Int

January 2025

College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.

View Article and Find Full Text PDF

Epinephrine (Ep) is an important neurotransmitter, which plays an important role in the nervous system and glycogen metabolism of living organisms. Hence, a novel NCQDs/FeCoFe-PBA composite with FeCoFe-Prussian blue analogues (PBA) as the core and nitrogen-doped carbon quantum dots (NCQDs) as the shell was constructed by a one-pot hydrothermal method, and it was used for the efficient detection of Ep. As a good electroactive material, NCQDs in the composite not only improved the weak conductivity of FeCoFe-PBA, but also limited the self-aggregation of FeCoFe-PBA, and formed a uniform shell on FeCoFe-PBA.

View Article and Find Full Text PDF

The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.

View Article and Find Full Text PDF

Aggregation-induced emission and absorption enhancement of mixed-valent rhenium oxide quantum dots by triethylamine: Implications for food safety monitoring.

J Hazard Mater

December 2024

Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:

Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!