Drought stress is known to limit plant performance in Mediterranean-type ecosystems. We have investigated the dynamics of the hydraulics, gas exchange and morphology of six co-existing Mediterranean woody species growing under natural field conditions during a drought that continued during the entire summer. Based on the observed minimum leaf water potentials, our results suggest that the six co-existing species cover a range of plant hydraulic strategies, from isohydric to anisohydric. These differences are remarkable since the selected individuals grow within several meters of each other, sharing the same environment. Surprisingly, whatever the leaf water potentials were at the end of the dry period, stomatal conductance, photosynthesis and transpiration rates were relatively similar and low across species. This result contradicts the classic view that anisohydric species are able to maintain gas exchange for longer periods of time during drought stress. None of the plants showed the expected structural acclimation response to the increasing drought (reduction of leaf-to-sapwood area ratio), thereby rejecting the functional equilibrium hypothesis for our study system. Instead, three of the six species increased photosynthetic area at the branch level. The observed dissimilar patterns of gas exchange, hydraulics and morphology across species seem to be equally successful given that photosynthesis at the leaf level was maintained at similar rates over the whole dry period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-011-1922-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!