A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Use of small angle neutron scattering to study the interaction of angiotensin II with model membranes. | LitMetric

Understanding biological processes assumes a detailed understanding of the interaction of all involved molecules. Here the effect of the peptide hormone angiotensin II (Ang II), an agonist of the angiotensin receptors, on the structure of unilamellar and multilamellar dimyristoyl phosphatidylcholine vesicles was studied by small angle neutron scattering, dynamic light scattering and differential scanning calorimetry. The calorimetry data indicate a weak interaction of Ang II with the surface of the membrane bilayer, as the pretransition persists during all experiments, and the main transition is only slightly shifted towards higher temperatures. From the SANS data we were able to confirm the calorimetric data and verify the interaction of the hormone with the membrane surface. At low temperatures, when the lipid molecules are in the gel phase, more precisely in the ripple phase, the peptide penetrates in the head group core, but due to the close packing of the acyl chains, the hydrophobic region is not affected. In a temperature region below but close to the region of the phase transition, the hydrophibic core starts to be affected by the peptide, and the same is true for the fluid phase. Upon binding of the peptide, the thickness of the head group increases, and the scattering length density of the head group starts to rise with increasing peptide concentrations. This interaction and binding to the membrane surface may be relevant for the relocation, binding and reconstitution of the angiotensin receptors into the membrane. Second, the peptide adsorption to the membrane surface may contribute to the binding of Ang II in the active site of the receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-011-0675-6DOI Listing

Publication Analysis

Top Keywords

membrane surface
12
head group
12
small angle
8
angle neutron
8
neutron scattering
8
angiotensin receptors
8
peptide
6
interaction
5
membrane
5
scattering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!