Genetic impairment of the genes coding for three mammalian trefoil peptides resulted in severe gastrointestinal malfunctions. The trefoil peptides also appear involved in caloric metabolism. Monitoring global miRNA expression of Tff3 deficient mice points to an interplay of Tff3 with a miRNA regulatory network. We identified 21 miRNAs that were deregulated when compared to the wild type strain. In silico evaluation indicated that the majority of the 21 miRNA were connected with the metabolic pathway "glycolysis/gluconeogenesis'' (p=0.032), a signaling pathway including nine target genes Aldh9a1, Aldh2, Pck1, Aldoc, Pgam2, Pck2, Adh4, Adh5, and Fbp1. Association of Tff3 with this metabolic pathway is further supported by the observation that the body mass of adult Tff3 KO mice (five months) showed a clearly reduced weight. Furthermore, the majority of the identified 21 miRNA genes are localized on murine chromosomes 2 and 5 in three clusters (2A1, 2B, 5B3) suggesting a coordinated expression control and function.

Download full-text PDF

Source
http://dx.doi.org/10.4161/rna.8.1.13687DOI Listing

Publication Analysis

Top Keywords

tff3 mirna
8
caloric metabolism
8
trefoil peptides
8
metabolic pathway
8
tff3
5
mirna
5
intestinal factor
4
factor tff3
4
mirna network
4
network regulate
4

Similar Publications

Could Be a Promising Marker for Preoperative Diagnosis of High-Grade Papillary Thyroid Carcinoma?

Diagnostics (Basel)

November 2024

Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.

Background/objectives: A modern classification distinguishes between two nosological entities posing an intermediate risk between differentiated and anaplastic carcinoma: poorly differentiated thyroid carcinoma and differentiated high-grade thyroid carcinoma. There are currently few studies searching for the preoperative molecular genetic markers of high-grade papillary thyroid carcinoma (PTC HG), primarily because of a recent WHO reclassification and singling out of a separate entity: high-grade follicular cell-derived nonanaplastic thyroid carcinoma. Therefore, this work was aimed at identifying PTC HG-specific microRNAs and mRNAs that reliably distinguish them from differentiated papillary thyroid carcinoma in preoperative cytology specimens (fine-needle aspiration biopsies).

View Article and Find Full Text PDF

Molecular genetic events are among the numerous factors affecting the clinical course of papillary thyroid carcinoma (PTC). Recent studies have demonstrated that aberrant expression of miRNA, as well as different thyroid-related genes, correlate with the aggressive clinical course of PTC and unfavorable treatment outcomes, which opens up new avenues for using them in the personalization of the treatment strategy for patients with PTC. In the present work, our goal was to assess the applicability of molecular markers in the preoperative diagnosis of aggressive variants of papillary thyroid cancer.

View Article and Find Full Text PDF

Alectinib, a second-generation anaplastic lymphoma kinase (ALK) inhibitor, has been shown to be effective for patients with ALK-positive non-small cell lung cancer (NSCLC). However, alectinib resistance is a serious problem worldwide. To the best of our knowledge, little information is available on its molecular mechanisms using the Gene Expression Omnibus (GEO) database.

View Article and Find Full Text PDF

Asthma is a chronic respiratory disease caused by environment-host interactions. Bronchial epithelial cells (BECs) are the first line of defense against environmental toxins. However, the mechanisms underlying the role of BECs in severe asthma (SA) are not yet fully understood.

View Article and Find Full Text PDF

LncRNAs, pseudogenes, and miRNAs participate a fundamental function in tumorigenesis, metabolism, and invasion of cancer cells, although their regulation of tumor glycolysis in prostate adenocarcinoma (PRAD) is thoroughly not well studied. In this study, we applied transcriptomic, proteomic, and medical information to identify glycolysis-related key genes and modules associated with PRAD. Then, the glycolysis-related lncRNA/lncRNAs/pseudogenes-miRNA-mRNA network was constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!