There is an urgent clinical need for chemotherapeutic and chemopreventive drugs for triple-negative breast cancer (TNBCa). Extending on our recent work, we hypothesize that the herbal compound 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG) can inhibit the growth and metastasis of TNBCa xenograft and target Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) 3-signaling axis. Daily oral gavage of 10 mg PGG/kg body wt decreased MDA-MB-231 xenograft weight by 49.3% (P < 0.01) at 40 days postinoculation, whereas weekly intraperitoneal injections of Taxol at the same dosage resulted in a 21.4% reduction (P > 0.1). PGG treatment also decreased the incidence of lung metastasis. Immunohistochemical staining detected decreased Ki-67 (proliferation) index and increased terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (apoptosis) index in PGG-treated and Taxol-treated xenografts. However, the CD34 (angiogenesis) index was decreased only in PGG-treated xenografts along with decreased phospho-STAT3. In cell culture of MDA-MB-231 cells, PGG decreased pSTAT3 and its downstream target proteins, decreased its upstream kinase pJAK1 and induced the expression of SHP1, a JAK1 upstream tyrosine phosphatase, within as early as 1 h of exposure. The phosphatase inhibitor pervanadate reversed the PGG-induced downregulation of pSTAT3 and caspase activation. Orally administered PGG can inhibit TNBCa growth and metastasis, probably through anti-angiogenesis, antiproliferation and apoptosis induction. Mechanistically, PGG-induced inhibition of JAK1-STAT3 axis may contribute to the observed in vivo efficacy and the effects on the cellular processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3106430 | PMC |
http://dx.doi.org/10.1093/carcin/bgr015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!