A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Wide-ranging DNA methylation differences of primary trophoblast cell populations and derived cell lines: implications and opportunities for understanding trophoblast function. | LitMetric

Difficulties associated with long-term culture of primary trophoblasts have proven to be a major hurdle in their functional characterization. In order to circumvent this issue, several model cell lines have been established over many years using a variety of different approaches. Due to their differing origins, gene expression profiles and behaviour in vitro, different model lines have been utilized to investigate specific aspects of trophoblast biology. However, generally speaking, the molecular mechanisms underlying functional differences remain unclear. In this study, we profiled genome-scale DNA methylation in primary first trimester trophoblast cells and seven commonly used trophoblast-derived cell lines in an attempt to identify functional pathways differentially regulated by epigenetic modification in these cells. We identified a general increase in DNA promoter methylation levels in four choriocarcinoma (CCA)-derived lines and transformed HTR-8/SVneo cells, including hypermethylation of several genes regularly seen in human cancers, while other differences in methylation were noted in genes linked to immune responsiveness, cell morphology, development and migration across the different cell populations. Interestingly, CCA-derived lines show an overall methylation profile more similar to unrelated solid cancers than to untransformed trophoblasts, highlighting the role of aberrant DNA methylation in CCA development and/or long-term culturing. Comparison of DNA methylation and gene expression in CCA lines and cytotrophoblasts revealed a significant contribution of DNA methylation to overall expression profile. These data highlight the variability in epigenetic state between primary trophoblasts and cell models in pathways underpinning a wide range of cell functions, providing valuable candidate pathways for future functional investigation in different cell populations. This study also confirms the need for caution in the interpretation of data generated from manipulation of such pathways in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797416PMC
http://dx.doi.org/10.1093/molehr/gar005DOI Listing

Publication Analysis

Top Keywords

dna methylation
20
cell populations
12
cell lines
12
cell
9
methylation
8
primary trophoblasts
8
gene expression
8
cca-derived lines
8
lines
7
dna
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!