Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The activation of ATP-sensitive potassium channels (K(ATP)), play a key role in an endogenous "self-defence" mechanism, known as ischemic preconditioning (IPC), which is fundamentally involved in the protection of the heart against the ischemia/reperfusion injury. Presently, it is widely accepted that IPC is mainly (albeit not exclusively) mediated by the activation of K(ATP) channels expressed in the mitochondrial inner membrane (mito-K(ATP)) rather than the sarcoplasmatic ones (sarc-K(ATP)). Consistently, exogenous activation of K(ATP) channels by pharmacological tools can be viewed as one of the most promising strategies for the therapy of myocardial ischemia. As part of our research program devoted to the synthesis and the evaluation of new cardioprotective agents, we extensively studied several six-membered spiro-heterocycle-benzopyran compounds endowed of a significant anti-ischemic activity. The positive results obtained, prompted us to further explore the influence on the biopharmacological effects, of the spiro-substitution at C4 benzopyran nucleus by replacing the six-membered spirocycle of the most active compounds with 5-membered-one. The preliminary evaluation of the new compounds on cultured H9c2 cardiomyoblasts exposed to anoxia/reperfusion and on Langendorff-perfused rat hearts submitted to ischemia/reperfusion cycles, showed that some of them can exert a cardioprotective effect. This anti-ischemic activity was antagonized by 5-hydroxydecanoic acid, a selective blocker of mito-K(ATP) channels, confirming the involvement of this channel in the cardioprotective activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2011.01.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!