A deficit in prepulse inhibition (PPI) can be one of the clinically observed features of post-traumatic stress disorder (PTSD) that is seen long after the acute traumatic episode has terminated. Thus, reduced PPI may represent an enduring psychophysiological marker of this illness in some patients. PPI is an operational measure of sensorimotor gating and refers to the phenomenon in which a weak stimulus presented immediately before an intense startling stimulus inhibits the magnitude of the subsequent startle response. The effects of stress on PPI have been relatively understudied, and in particular, there is very little information on PPI effects of ethologically relevant psychological stressors. We aimed to develop a paradigm for evaluating stress-induced sensorimotor gating abnormalities by comparing the effects of a purely psychological stressor (predator exposure) to those of a nociceptive physical stressor (footshock) on PPI and baseline startle responses in rats over an extended period of time following stressor presentation. Male Sprague-Dawley rats were exposed (within a protective cage) to ferrets for 5 min or left in their homecage and then tested for PPI immediately, 24 h, 48 h, and 9 days after the exposure. The effects of footshock were evaluated in a separate set of rats. The effects seen with stressor presentation were compared to those elicited by corticotropin-releasing factor (CRF; 0.5 and 3 μg/6 μl, intracerebroventricularly). Finally, the effects of these stressors and CRF administration on plasma corticosterone were measured. PPI was disrupted 24 h after ferret exposure; in contrast, footshock failed to affect PPI at any time. CRF mimicked the predator stress profile, with the lowdose producing a PPI deficit 24 h after infusion. Interestingly, the high dose also produced a PPI deficit 24 h after infusion, but with this dose, the PPI deficit was evident even 9d later. Plasma corticosterone levels were elevated acutely (before PPI deficits emerged) by both stressors and CRF, but returned to normal control levels 24 h later, when PPI deficits were present. Thus, predator exposure produces a delayed disruption of PPI, and stimulation of CRF receptors recapitulates these effects. Contemporaneous HPA axis activation is neither necessary nor sufficient for these PPI deficits. These results indicate that predator exposure, perhaps acting through CRF, may model the delayed-onset and persistent sensorimotor gating abnormalities that have been observed clinically in PTSD, and that further studies using this model may shed insight on the mechanisms of information-processing deficits in this disorder. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113641PMC
http://dx.doi.org/10.1016/j.neuropharm.2011.01.040DOI Listing

Publication Analysis

Top Keywords

sensorimotor gating
16
predator exposure
16
ppi
16
gating abnormalities
12
ppi deficit
12
ppi deficits
12
corticotropin-releasing factor
8
stressor presentation
8
stressors crf
8
plasma corticosterone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!