A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The influence of diabetes on glutamate metabolism in retinas. | LitMetric

The influence of diabetes on glutamate metabolism in retinas.

J Neurochem

Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.

Published: April 2011

Excised retinas from euglycemic and diabetic Sprague-Dawley rats were studied to evaluate differences in glutamate metabolism related to diabetes. Reports suggest, neuronal cell death possibly caused by glutamate excitotoxicity, is an early consequence of diabetes. To monitor the influence of diabetes on glutamate metabolism, we measured glutamatergic neurotransmission, anaplerotic glutamate synthesis from (14) CO(2) and pyruvate as well as rates of glutamate cataplerosis ([U-(14) C]glutamate to (14) CO(2) and (14) C-pyruvate). The data suggest the presence of a glutamate buffering anaplerotic/cataplerotic metabolic cycle in controls which is uncoupled by diabetes. For cycle operation, anaplerosis is initiated by a small pyruvate pool which is also the product of cataplerosis. In the cataplerotic pathway, glutamate conversion to α-ketoglutarate and then to CO(2) and pyruvate is reduced by 90% in diabetic retinal Müller cells because glutamate transamination by branched chain aminotransferase is competitively inhibited by branched chain amino acids (BCAAs). BCAAs, but not the ketoacids, were almost twice as high in diabetic compared to euglycemic rat retinas. The data suggest the hypothesis that glutamate levels in retinal Müller cells from diabetic rats are elevated because of the presence of excess BCAAs, and that elevated glutamate in Müller cells causes glutamate excitotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2011.07206.xDOI Listing

Publication Analysis

Top Keywords

glutamate
12
glutamate metabolism
12
müller cells
12
influence diabetes
8
diabetes glutamate
8
glutamate excitotoxicity
8
co2 pyruvate
8
retinal müller
8
cells glutamate
8
branched chain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!