A very convenient and efficient modular approach for the synthesis of vicinal diamines containing axial chiral 1,1'-binaphthyl from 1,2-diaminoethane by Pd-catalyzed N-arylation reactions has been developed. The resulting chiral diamines could be easily converted into NHC precursors, imidazole salts, in good yields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol103169zDOI Listing

Publication Analysis

Top Keywords

modular approach
8
approach synthesis
8
synthesis vicinal
8
vicinal diamines
8
diamines axial
8
axial chiral
8
chiral 11'-binaphthyl
8
11'-binaphthyl 12-diaminoethane
8
12-diaminoethane pd-catalyzed
8
pd-catalyzed n-arylation
8

Similar Publications

A modular approach to catalytic stereoselective synthesis of chiral 1,2-diols and 1,3-diols.

Nat Commun

January 2025

The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.

Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge.

View Article and Find Full Text PDF

Amino alcohols are vital in natural products, pharmaceuticals and agrochemicals, and as key building blocks for various applications. Traditional synthesis methods often rely on polar bond retrosynthetic analysis, requiring extensive protecting group manipulations that complicate direct access. Here we show a streamlined approach using a serine-derived chiral carboxylic acid in stereoselective electrocatalytic decarboxylative transformations, enabling efficient access to enantiopure amino alcohols.

View Article and Find Full Text PDF

Reconfigurable modular robots can be used in application domains such as exploration, logistics, and outer space. The robots should be able to assemble and work as a single entity to perform a task that requires high throughput. Selecting an optimum assembly position with minimum distance traveled by robots in an obstacle surrounding the environment is challenging.

View Article and Find Full Text PDF

Background: Recently, a highly significant brain proteome divergent modules change between Alzheimer's disease (AD) and CRND8 APP transgenic mice has been found. The M42 module is the module in human AD most highly correlated with amyloid and tau pathologies and cognitive decline. Among all proteins in this module, the (SPARC-related modular calcium-binding protein 1) SMOC1 is emerging as a robust biomarker of amyloid deposition in CSF.

View Article and Find Full Text PDF

Protein phosphorylation signaling networks have a central role in how cells sense and respond to their environment. We engineered artificial phosphorylation networks in which reversible enzymatic phosphorylation cycles were assembled from modular protein domain parts and wired together to create synthetic phosphorylation circuits in human cells. Our design scheme enabled model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, and downstream connections can regulate gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!