Objectives/hypothesis: The objective was to determine whether low-frequency repetitive transcranial magnetic stimulation (rTMS) improves tinnitus by decreasing neural activity in auditory processing regions of the temporal cortex and the utility of positron emission tomography (PET) for targeting treatment.

Study Design: Randomized, sham-controlled crossover.

Methods: Patients received a five-day course of active and sham 1-Hz rTMS (1800 pulses at 110% of motor threshold) to the temporal cortex, with a week separating active and sham treatment. Visual analogue ratings of tinnitus loudness (VARL) were assessed at baseline and the end of each treatment week; regional brain blood flow (rBBF) and glucose metabolism (via PET) were measured before and after treatment in regions of interest (ROI) beneath the stimulating coil and control sites.

Results: The VARL for both ears significantly decreased after active but not sham treatment. Responders comprised 43% of patients, experiencing at least a 33% drop in tinnitus loudness. The site most consistently associated with a positive response was the secondary auditory cortex (Brodmann Area 22) in either hemisphere. PET asymmetries were variable across patients and not always accessible to rTMS. Whereas PET activity decreased significantly beneath the stimulating coil following active treatment, similar changes occurred at control sites and after sham stimulation. Change in tinnitus perception did not correlate significantly with change in PET activity at the treatment site ROI.

Conclusions: Active TMS led to a significant reduction in tinnitus loudness, but PET scans failed to support the hypothesis that low-frequency rTMS improves tinnitus by reducing cortical activation at the stimulation site, questioning the utility of PET for targeting rTMS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079336PMC
http://dx.doi.org/10.1002/lary.21425DOI Listing

Publication Analysis

Top Keywords

pet activity
12
active sham
12
tinnitus loudness
12
pet
8
rtms improves
8
improves tinnitus
8
temporal cortex
8
pet targeting
8
sham treatment
8
beneath stimulating
8

Similar Publications

Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

Background And Hypothesis: Cognitive impairments are particularly disabling for patients with a psychotic disorder and often persist despite optimization of antipsychotic treatment. Thus, motivating an extension of the research focus on the endocannabinoid system. The aim of this study was to evaluate group differences in brain fatty acid amid hydrolase (FAAH), an endocannabinoid enzyme between first-episode psychosis (FEP), individuals with clinical high risk (CHR) for psychosis and healthy controls (HCs).

View Article and Find Full Text PDF

Validation of quantitative [F]NaF PET uptake parameters in bone diseases: a systematic review.

Ann Nucl Med

December 2024

Department of Endocrinology and Metabolism, Rare Bone Disease Center, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands.

Purpose: [F]NaF PET has become an increasingly important tool in clinical practice toward understanding and evaluating diseases and conditions in which bone metabolism is disrupted. Full kinetic analysis using nonlinear regression (NLR) with a two-tissue compartment model to determine the net rate of influx (K) of [F]NaF is considered the gold standard for quantification of [F]NaF uptake. However, dynamic scanning often is impractical in a clinical setting, leading to the development of simplified semi-quantitative parameters.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans.

View Article and Find Full Text PDF

A Transcriptome Approach Evaluating the Effects of Atractylenolide I on the Secretion of Estradiol and Progesterone in Feline Ovarian Granulosa Cells.

Vet Sci

December 2024

Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.

(AMK) as an oriental medicine has been used in the treatment of threatened abortion. (AT-I) is one of the major bioactive components of AMK. This study aimed to investigate the effect of AT-I on the secretion of estradiol (E) and progesterone (P) in feline ovarian granulosa cells (FOGCs), which is necessary for pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!