Within the human testis, Reinke's crystals are found in Leydig cells but their nature and function are poorly understood. The aim of our study was to investigate the properties of Reinke's crystals in man with the normal morphology of the testis (control group) and infertile patients diagnosed with cryptorchidism. 20 biopsies from infertile patients and six biopsies from men with regular spermatogenesis (20-30 years.) were used. Sections of the testis tissue were stained with haematoxylin and eosin and a modified Masson's method. Specimens were observed by bright field, confocal and transmission electron microscopy (TEM). The number of Reinke's crystals in investigated groups was determined applying stereological methods. In both groups, Reinke's crystals were noted within the cytoplasm and nuclei of Leydig cells. Some "free" crystals were found within the interstitial space, outside Leydig cells. Confocal microscopy proved to be very useful in the assessment of the shape and 3D reconstruction of the crystal. TEM analysis confirmed a hexagonal form of the crystal, while crystallographic data on sections of 70-300 nm thickness provided a better insight into the organization of the crystal lattice. Stereological analysis revealed a significant increase in the number of crystals in cryptorchid testes when compared with controls. Increased number of crystals in cryptorchid specimens leads to the assumption that the prolonged exposure to higher (abdominal) temperature might stimulate enzymes involved in the synthesis of the proteins of the crystal. However, the exact molecular nature of the crystal lattice remains in both normal and cryptorchid testis obscure.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-011-0782-6DOI Listing

Publication Analysis

Top Keywords

reinke's crystals
20
leydig cells
12
crystals
8
normal cryptorchid
8
cryptorchid testis
8
infertile patients
8
crystal lattice
8
number crystals
8
crystals cryptorchid
8
testis
5

Similar Publications

Crystal structures of cables formed by the acetylated and unacetylated forms of the Schizosaccharomyces pombe tropomyosin ortholog Tpm.

J Biol Chem

October 2024

Institute for Biophysical Chemistry, Fritz-Hartmann-Centre for Medical Research, Hannover Medical School, Hannover, Germany; Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany. Electronic address:

Cables formed by head-to-tail polymerization of tropomyosin, localized along the length of sarcomeric and cytoskeletal actin filaments, play a key role in regulating a wide range of motile and contractile processes. The stability of tropomyosin cables, their interaction with actin filaments and the functional properties of the resulting co-filaments are thought to be affected by N-terminal acetylation of tropomyosin. Here, we present high-resolution structures of cables formed by acetylated and unacetylated Schizosaccharomyces pombe tropomyosin ortholog Tpm.

View Article and Find Full Text PDF

SPARC will be outfitted with three systems of x-ray crystal spectrometer arrays. Two of these are designed using cylindrically bent crystals to achieve high spectral-resolution for ion temperature and toroidal velocity measurements via imaging He-like Kr and Ne-like Xe. The last acts as a spectral survey system to monitor Ne-like W and nearby H- and He-like emission from Cr, Fe, Co, Ni, and Cu.

View Article and Find Full Text PDF
Article Synopsis
  • The main protease (M) of SARS-CoV-2 is crucial for the virus's functionality and is considered a potential target for drug development, as it is only active in its reduced form.
  • When oxidized, M's activity halts but can be restored, indicating an evolutionary adaptation to oxidative environments, although the protective mechanisms haven't been fully elucidated.
  • Researchers determined the crystal structure of oxidized M, revealing a disulfide bond that affects its dimer stability and crystallization, providing insights into the protein's response to oxidative stress and its structural study conditions.*
View Article and Find Full Text PDF
Article Synopsis
  • Emerging RNA viruses like SARS-CoV-2 pose significant health risks, with the virus entering cells through pathways that rely on cysteine cathepsins, particularly cathepsin L (CatL), a potential target for treatment.
  • * Researchers explored a range of inhibitors targeting CatL, finding that compounds such as Calpain inhibitor XII and MG-101 show strong antiviral effects at very low concentrations in specific cell lines.
  • * The study also revealed an off-target effect of some inhibitors and provided detailed crystal structures of CatL, which can help in designing better drug candidates against protease-related diseases.
View Article and Find Full Text PDF

The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!