Local interneuron diversity in the primary olfactory center of the moth Manduca sexta.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

Department of Neuroscience, University of Arizona, Tucson, 85721, USA.

Published: June 2011

Local interneurons (LNs) play important roles in shaping and modulating the activity of output neurons in primary olfactory centers. Here, we studied the morphological characteristics, odor responses, and neurotransmitter content of LNs in the antennal lobe (AL, the insect primary olfactory center) of the moth Manduca sexta. We found that most LNs are broadly tuned, with all LNs responding to at least one odorant. 70% of the odorants evoked a response, and 22% of the neurons responded to all the odorants tested. Some LNs showed excitatory (35%) or inhibitory (33%) responses only, while 33% of the neurons showed both excitatory and inhibitory responses, depending on the odorant. LNs that only showed inhibitory responses were the most responsive, with 78% of the odorants evoking a response. Neurons were morphologically diverse, with most LNs innervating almost all glomeruli and others innervating restricted portions of the AL. 61 and 39% of LNs were identified as GABA-immunoreactive (GABA-ir) and non-GABA-ir, respectively. We found no correlations between odor responses and GABA-ir, neither between morphology and GABA-ir. These results show that, as observed in other insects, LNs are diverse, which likely determines the complexity of the inhibitory network that regulates AL output.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00359-011-0625-xDOI Listing

Publication Analysis

Top Keywords

primary olfactory
12
lns
9
olfactory center
8
center moth
8
moth manduca
8
manduca sexta
8
odor responses
8
inhibitory responses
8
responses
5
local interneuron
4

Similar Publications

Olfactory deficits in aging and Alzheimer's-spotlight on inhibitory interneurons.

Front Neurosci

December 2024

Institute of Physiology, RG Neurophysiology and Optogenetics, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany.

Cognitive function in healthy aging and neurodegenerative diseases like Alzheimer's disease (AD) correlates to olfactory performance. Aging and disease progression both show marked olfactory deficits in humans and rodents. As a clear understanding of what causes olfactory deficits is still missing, research on this topic is paramount to diagnostics and early intervention therapy.

View Article and Find Full Text PDF

Nose-to-brain delivery of lithium via a sprayable in situ-forming hydrogel composed of chelating starch nanoparticles.

J Control Release

December 2024

Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:

While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.

View Article and Find Full Text PDF

Characterization of aroma differences in Jiangxiangxing Baijiu with varying ethanol concentrations: Emphasis on olfactory threshold changes of aroma compounds.

Food Chem

December 2024

Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Resources, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China. Electronic address:

In this study, the aroma profiles of high- and low-alcohol Jiangxiangxing Baijiu were compared through sensory analysis, revealing significant differences in acidic, floral, fruity, smoky and oxidized oil notes. To further clarify the underlying causes of aroma differences, we examined the concentrations of 106 important compounds, revealing that the concentrations differences between the two were generally 1 to 2 times. Furthermore, the determination results of the olfactory thresholds (OTs) indicated that the OT of 87 aroma compounds was less than the OT, with 68 compounds exhibiting OT changes ranging from 2 to 17 times.

View Article and Find Full Text PDF

The Constituent-Dependent Translocation Mechanism for PM to Travel through the Olfactory Pathway.

Environ Health (Wash)

December 2024

Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

The neurotoxic risk of PM is of worldwide concern, but the pathways through which PM gets to the central nervous system are still under debate. The olfactory pathway provides a promising shortcut to the brain, which bypasses the blood-brain barrier for PM. However, direct evidence is lacking, and the translocation mechanism is still unclear.

View Article and Find Full Text PDF

Structural and functional connectomics of the olfactory system in Parkinson's disease: a systematic review.

Parkinsonism Relat Disord

December 2024

Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy. Electronic address:

Olfactory dysfunction, affecting 75-90 % of Parkinson's disease (PD) patients, holds significant predictive value for PD development. Advanced imaging techniques, such as diffusion MRI (dMRI) and functional MRI (fMRI), offer insights into structural and functional changes within olfactory pathways. This review summarizes a decade of research on MRI-based connectivity of the olfactory system in PD, focusing on structural and functional alterations in olfactory brain areas and their links to early olfactory processing changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!