Coastal zones encompass a complex spectrum of environmental gradients that each impact the composition of bacterioplankton communities. Few studies have attempted to address these gradients comprehensively. We generated a synoptic, 16S rRNA gene-based bacterioplankton community profile of a coastal zone by applying the fingerprinting technique denaturing gradient gel electrophoresis to water samples collected from the Columbia River, estuary, and plume, and along coastal transects covering 360 km of the Oregon and Washington coasts and extending to the deep ocean (>2,000 m). Communities were found to cluster into five distinct groups based on location in the system (ANOSIM, p < 0.003): estuary, plume, epipelagic, shelf bottom (depth < 150 m), and slope bottom (depth > 650 m). Across all environments, abiotic factors (salinity, temperature, depth) explained most of the community variability (ρ = 0.734). But within each coastal environment, biotic factors explained most of the variability. Thus, structuring physical factors in coastal zones, such as salinity and temperature, define the boundaries of many distinct microbial habitats, but within these habitats variability in microbial communities is explained by biological gradients in primary and secondary productivity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-011-9805-zDOI Listing

Publication Analysis

Top Keywords

bacterioplankton community
8
environmental gradients
8
coastal zones
8
estuary plume
8
bottom depth
8
salinity temperature
8
coastal
5
community variation
4
variation river
4
river ocean
4

Similar Publications

Alterations caused by human activities in the environment, such as dredging, modify the physicochemical conditions and affect the habitat. Maintenance dredging that allows large vessels access to inland ports is a recurring disruptive action. The study aimed to evaluate, during a maintenance dredging operation in a port area of the Paraná River, the modifications in the structure of the river, the presence of contaminants and bacterial organisms.

View Article and Find Full Text PDF

As global food security issues become increasingly severe, an important innovation in agricultural production patterns, namely integrated rice-fish farming, has been widely implemented around the world, especially in Asia. To assess the impact of integrated rice-crayfish () farming (IRCF) on agricultural ecosystems, we used Illumina high-throughput 16S rRNA gene sequencing to analyze differences in diversity, composition, co-occurrence network, and assembly process of planktonic bacterial communities in paddy water between traditional rice farming (TRM) and IRCF. Environmental factors and planktonic bacterial communities were evaluated during the tillering, jointing, flowering, and grain-filling stages on August 24, September 5, September 24, and October 16, respectively.

View Article and Find Full Text PDF

Spatial distribution of bacteria in response to phytoplankton community and multiple environmental factors in surface waters in Sanggou Bay.

Mar Environ Res

December 2024

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laoshan Laboratory, Qingdao, 266237, China.

Coastal bays link terrestrial and oceanic carbon reservoirs and play important roles in marine carbon cycles. Particulate organic carbon (POC) produced by phytoplankton is a major autochthonous carbon source in coastal bays. Previous studies on the fate of POC produced by phytoplankton mainly focused on the relationship between phytoplankton and zooplankton in classic food webs, while our knowledge on the roles of bacterioplankton is still limited, particularly in bays under highly intensive aquaculture activities.

View Article and Find Full Text PDF

Evidence of sewage discharge on the coalescence mechanism of aquatic microbial communities during high amplitude hydrological periods.

Sci Total Environ

January 2025

Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

Microbial community coalescence is a ubiquitous ecological process in various ecosystems. However, limited research has addressed the effects of the coalescence on microbial ecological processes and network structure, particularly in the context of sewage discharge during high amplitude hydrological periods. Employing 16S rRNA sequencing and species source tracking analysis, we investigated the coalescence pattern of bacterioplankton in the Chishui river and sewage across various hydrological periods.

View Article and Find Full Text PDF

Promoted growth with dynamic cellular stoichiometry driven by utilization of in-situ dissolved organic matter: Insights from bloom-forming dinoflagellate Prorocentrum donghaiense.

Mar Environ Res

December 2024

State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, China. Electronic address:

Mixotrophic dinoflagellates frequently cause harmful algal blooms (HABs) in eutrophic waters that contain diverse dissolved organic matter (DOM), especially intensive mariculture areas. Compared to the extensive investigation of phagotrophy and single organic molecule uptake by causative species, we have limited knowledge about the capability of mixotrophic dinoflagellates to utilize in-situ DOM in mariculture waters and its contribution to HABs. Here we use filtered in-situ mariculture water as the sole medium to examine the physiological response of Prorocentrum donghaiense to the natural mariculture DOM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!