An enantiopure ligand built from connecting the π···π stacking 1,8-naphthalimide supramolecular synthon with L-asparagine, L(asn)(-), forms tetrameric [Cu(4)(L(asn))(8)(py)(MeOH)]. The methanol ligand, located in a chiral pocket, is replaced enantioselectively when exposed to racemic ethyl lactate vapor to yield [Cu(4)(L(asn))(8)(py)((S)-ethyl lactate)], in a single-crystal to single-crystal gas/solid transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cc04797jDOI Listing

Publication Analysis

Top Keywords

enantiopure ligand
8
supramolecular synthon
8
single-crystal single-crystal
8
copperii carboxylate
4
carboxylate tetramers
4
tetramers formed
4
formed enantiopure
4
ligand
4
ligand π-stacking
4
π-stacking supramolecular
4

Similar Publications

The development of catalytic methods for the synthesis of enantiopure saturated heterocycles has been a long-standing challenge in asymmetric catalysis. We describe the first highly enantioselective palladium-catalyzed βC(sp)-H arylation and olefination of lactams for the preparation of various chiral N-heterocycles bearing quaternary carbon centers. The presence of strongly electron-withdrawing groups on the chiral bifunctional MPAThio ligand is crucial to the reactivity of weakly coordinating lactams.

View Article and Find Full Text PDF

Three two-dimensional (2D) chiral Ag(I) complexes with formulas [Ag(L)(5-nipa)] (), [Ag(L)(5-nipa)] (), and {[Ag(L)(5-hipa)]·2HO} () were prepared through the reactions of AgO with enantiopure -monodentate N-donors (L/L) and different dicarboxylic acids bearing A (acceptor)-π-- and D (donor)-π--type structural features, where / = (-)/(+)-2-(4'-pyridyl)-4,5-pinene-pyridine, 5-Hnipa = 5-nitroisophthalic acid, and 5-Hhipa = 5-hydroxyisophthalic acid. A study of their nonlinear optical responses reveals that chiral and enantiomeric pairs with the A-π--type dicarboxylic acid ligand simultaneously display second- and third-harmonic generation (SHG and THG) responses, while chiral containing the D-π--type dicarboxylic acid ligand only exhibits a very strong THG response. The THG intensity of is 451 × α-SiO, being about 27 and 24 times larger than those of and , respectively.

View Article and Find Full Text PDF

Atomically precise nanoclusters can be assembled into ordered superlattices with unique electronic, magnetic, optical and catalytic properties. The co-crystallization of nanoclusters with functional organic molecules provides opportunities to access an even wider range of structures and properties, but can be challenging to control synthetically. Here we introduce a supramolecular approach to direct the assembly of atomically precise silver nanoclusters into a series of nanocluster‒organic ionic co-crystals with tunable structures and properties.

View Article and Find Full Text PDF

Enhanced Circularly Polarized Green Luminescence Metrics from New Enantiopure Binary -Pyrazolonate-Tb Complexes.

Molecules

December 2024

Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China.

Achieving superior circularly polarized luminescence brightness () is an important subject and continuous challenge for chiroptical materials. Herein, by applying a binary molecular design for the synthesis of chiral organo-Tb molecules, a novel pair of mononuclear chiral -pyrazolate-Tb enantiomers, [Tb(PMIP)(,-Ph-PyBox)] () and [Tb(PMIP)(,-Ph-PyBox)] (), have been synthesized and characterized. The three 1-phenyl-3-methyl-4-(isobutyryl)-5-pyrazolone () ligands play the role of efficient luminescence sensitizers and strong light-harvesting antennas, while the enantiopure 2,6-bis(4-phenyl-2-oxazolin-2-yl) pyridine ligand (/) is employed as the strong point-chiral inducer.

View Article and Find Full Text PDF

Catalyst Improved Stereoselectivity and Regioselectivity Control to Access Completely Alternating Poly(lactic-co-glycolic acid) with Enhanced Properties.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.

The poly(lactic-co-glycolic acid) (PLGA) with completely alternating sequence has attracted growing attention as an ideal candidate in controlled drug delivery. However, the approach to completely alternating PLGA remains a challenge. Herein, we report the successful synthesis of completely alternating PLGA via highly regioselective and stereoselective ring-opening polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!