Background: High tibial osteotomy (HTO) is a method used to treat medial compartmental osteoarthritis in the knee. The realignment of the knee changes the loading patterns within the joint and may allow for regeneration of articular cartilage. Magnetic resonance imaging methods can be used to assess the quality of the regenerated cartilage.

Hypothesis: Altering mechanical alignment through HTO will have predictable effects on articular cartilage, allowing cartilage preservation and possible regeneration. Quality of regenerated cartilage will be inferior to normal articular cartilage.

Study Design: Case series; Level of evidence, 4.

Methods: Ten patients undergoing medial opening wedge HTO were evaluated using dGEMRIC methods (ie, delayed gadolinium-enhanced magnetic resonance imaging of cartilage) preoperatively and at 6 months, 1 year, and 2 years after HTO. Magnetic resonance images were evaluated by hand segmentation, and T1(Gd) relaxation times reflective of glycosaminoglycan content were determined for these regions of interest using magnetic resonance imaging analysis software.

Results: The lateral compartment displayed higher T1(Gd) values than the medial compartment at baseline. Initially, a decrease in T1(Gd) values on the medial side were observed for all patients at 6 months and remained reduced for all but 2 participants at 1 year and 2 years after HTO. However, on the medial side after 6 months, the rate of change for T1(Gd) values shifted from being negative (-9.6 milliseconds per month) to being positive (1.7 milliseconds per month). A positive change in the T1(Gd) of the medial tibial plateau was responsible for the positive overall change in the medial compartment. There was no significant difference in the rate of change on the lateral side (P = .141), with the average over the 2-year period being a decrease of 2.28 milliseconds per month.

Conclusion: Medial opening wedge HTO provides subjective improvements in pain and quality of life, but the potential benefit of allowing articular cartilage preservation and possible regeneration is not well established. Results showed that after a nonweightbearing period, the rate of change in the medial compartment changes from negative to positive, indicating the potential for articular cartilage recovery secondary to an improved mechanical environment.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0363546510392702DOI Listing

Publication Analysis

Top Keywords

articular cartilage
20
magnetic resonance
16
resonance imaging
12
t1gd values
12
medial compartment
12
rate change
12
medial
9
quality regenerated
8
cartilage preservation
8
preservation regeneration
8

Similar Publications

Therapeutic role of aripiprazole in cartilage defects explored through a drug repurposing approach.

Sci Rep

December 2024

Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.

Articular cartilage has a limited regenerative capacity, resulting in poor spontaneous healing of damaged tissue. Despite various scientific efforts to enhance cartilage repair, no single method has yielded satisfactory results. With rising drug development costs, drug repositioning has emerged as a viable alternative.

View Article and Find Full Text PDF

Wood-Derived Hydrogels for Osteochondral Defect Repair.

ACS Nano

December 2024

Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Repairing cartilage tissue is a serious global challenge. Herein, we focus on wood skeletal structures that are highly porous for cell penetration yet have load-bearing strength, and aim to synthesize wood-derived hydrogels with the ability to regenerate cartilage tissues. The hydrogels were synthesized by wood delignification and the subsequent intercalation of citric acid (CA), which is involved in tricarboxylic acid cycles and essential for energy production, and -acetylglucosamine (NAG), which is a cartilage glycosaminoglycan, among cellulose microfibrils.

View Article and Find Full Text PDF

Background: In magnetic resonance imaging (MRI) segmentation research, the choice of sequence influences the segmentation accuracy. This study introduces a method to compare sequences. By aligning sequences with specific segmentation objectives, we provide an example of a comparative analysis of various sequences for knee images.

View Article and Find Full Text PDF

Tissue engineering and cartilage transplantation constitute an evolving field in the treatment of osteoarthritis, with therapeutic and clinical promise shown in autologous chondrocyte implantation. The aim of this systematic review is to explore current clinical trials that utilized autologous chondrocyte transplantation (ACT) and assess its efficacy in the treatment of osteoarthritis. PubMed, Ovid MEDLINE, and Google-Scholar (pages 1-20) were searched up until February 2023.

View Article and Find Full Text PDF

This study aimed to explore the construction of experimental animal models replicating cartilage defects across diverse load-bearing sites, compare self-repair conditions, and examine the role of mechanical stimulation in cartilage self-repair. Experimental animal models were established in rabbits to simulate full-thickness cartilage defects without penetrating the subchondral bone, at various load-bearing sites, including the posterior femoral condyle, anterior femoral condyle and femoral trochlear of knee joint, and the humerus of the shoulder joint. The successful exposure and construction of cartilage defects at the anterior femoral condyle, femoral trochlear, and posterior femoral condyle through the medial extension of surgical incision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!