Increased circulating levels of resistin have been proposed as a possible link between obesity and insulin resistance; however, many of the potential metabolic effects of resistin remain to be investigated, including systemic versus local resistin action. We investigated potential autocrine effects of resistin on lipid and glucose metabolism in 2- and 16-mo-old transgenic spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin under control of the aP2 promoter. To search for possible molecular mechanisms, we compared gene expression profiles in adipose tissue in 6-wk-old transgenic SHR versus control rats, before development of insulin resistance, by digital transcriptional profiling using high-throughput sequencing. Both young and old transgenic rats showed moderate expression of the resistin transgene in adipose tissue but had serum resistin levels similar to control SHR and undetectable levels of transgenic resistin in the circulation. Young transgenic rats exhibited mild glucose intolerance. In contrast, older transgenic rats displayed marked glucose intolerance in association with near total resistance of adipose tissue to insulin-stimulated glucose incorporation into lipids (6 ± 2 vs. 77 ± 19 nmol glucose·g(-1)·2 h(-1), P < 0.00001). Ingenuity Pathway Analysis of differentially expressed genes revealed calcium signaling, Nuclear factor-erythroid 2-related factor-2 (NRF2)-mediated oxidative stress response, and actin cytoskeletal signaling canonical pathways as those most significantly affected. Analysis using DAVID software revealed oxidative phosphorylation, glutathione metabolism, pyruvate metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling as top Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. These results suggest that with increasing age autocrine effects of resistin in fat tissue may predispose to diabetes in part by impairing insulin action in adipose tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092332 | PMC |
http://dx.doi.org/10.1152/physiolgenomics.00112.2010 | DOI Listing |
Microbiome
January 2025
Toronto General Hospital, University Health Network, Toronto, Canada.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a range of histological findings from the generally benign simple steatosis to steatohepatitis (MASH) which can progress to fibrosis and cirrhosis. Several factors, including the microbiome, may contribute to disease progression.
Results: Here, we demonstrate links between the presence and abundance of specific bacteria in the adipose and liver tissues, inflammatory genes, immune cell responses, and disease severity.
J Transl Med
January 2025
Metabolism and Investigation Unit, Maimonides Institute of Biomedicine Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.
Background: Perinatal growth and nutrition have been shown to be determinants in the programming of different tissues, such as adipose tissue, predisposing individuals to metabolic alterations later in life. Previous studies have documented an increased risk of metabolic disturbances and low-grade inflammation in prepubertal children with a history of extrauterine growth restriction (EUGR). The aim of this study was to evaluate possible alterations resulting from impaired growth during early childhood and their impact on young adult health.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
Background: Muscle and adipose tissue are the most critical indicators of beef quality, and their development and function are regulated by noncoding RNAs (ncRNAs). However, the differential regulatory mechanisms of ncRNAs in muscle and adipose tissue remain unclear.
Results: In this study, 2,343 differentially expressed mRNAs (DEMs), 235 differentially expressed lncRNAs (DELs), 95 differentially expressed circRNAs (DECs) and 54 differentially expressed miRNAs (DEmiRs) were identified in longissimus dorsi muscle (LD), subcutaneous fat (SF) and perirenal fat (VF) in Qinchuan beef cattle.
Chin J Integr Med
January 2025
Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.
Adipose tissue-derived mesenchymal stem cells (ADSCs) are crucially involved in various biological processes because of their self-renewal, multi-differentiation, and immunomodulatory activities. Some ADSC's characteristics have been associated with the basic theory of Chinese medicine (CM), especially the Meridian theory. CM can improve the biological properties of ADSCs to facilitate their use in injury treatment, restore immune homeostasis, and inhibit inflammatory responses.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Middle-aged obesity, characterized by excessive fat accumulation and systemic energy imbalance, often precedes various health complications. Recent research has unveiled a surprising link between DNA damage response and energy metabolism. Here, we explore the role of Eepd1, a DNA repair enzyme, in regulating adipose tissue function and obesity onset.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!