Gliomas are the most common human brain tumours and can be classified into four grades based on clinical and pathological criteria. A recent cancer genome-sequencing project revealed that more than 70% of low-grade gliomas bear mutations in one of two NAD(+)-dependent isocitrate dehydrogenase enzymes, namely, IDH1 and IDH2. Based on the findings that glioma-derived mutations in IDH1 can inhibit the catalytic activity of the enzyme, induce HIF-1α, and can produce 2-hydroxyglutarate, two research groups speculated that the IDH mutations may contribute to the promotion of tumorigenesis in gliomas. However, they cannot fully explain the phenomenon that patients harbouring such mutations usually have better outcomes than those with the wild-type IDH genes. This fact leads us to hypothesize that the IDH mutations are not the origin of gliomas but a subsequent protective mechanism that interferes with the metabolism of the tumour cells, making these cells fragile and susceptible to cell death. This process finally helps patients who harbour such IDH mutations to survive. Therefore, contrary to the proposals of other researchers, we speculate that any interventions that correct the impaired function of the mutant IDHs, such as the use of cell-permeable α-ketoglutarate derivatives, may not cure gliomas and may even worsen the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mehy.2011.01.011DOI Listing

Publication Analysis

Top Keywords

idh mutations
12
isocitrate dehydrogenase
8
protective mechanism
8
mutations
7
gliomas
5
dehydrogenase mutations
4
mutations protective
4
mechanism glioma
4
glioma patients
4
patients gliomas
4

Similar Publications

Gliomas account for nearly 30% of all primary central nervous system (CNS) tumors in children and adolescents and young adults (AYA), contributing to significant morbidity and mortality. The updated molecular classification of gliomas defines molecularly diverse subtypes with a spectrum of tumors associated with age-distinct incidence. In adults, gliomas are characterized by the presence or absence of mutations in isocitrate dehydrogenase (), with mutated (mIDH) gliomas providing favorable outcomes and avenues for targeted therapy with the emergence of mIDH inhibitors.

View Article and Find Full Text PDF

Prediction of isocitrate dehydrogenase (IDH) mutation status and epilepsy occurrence are important to glioma patients. Although machine learning models have been constructed for both issues, the correlation between them has not been explored. Our study aimed to exploit this correlation to improve the performance of both of the IDH mutation status identification and epilepsy diagnosis models in patients with glioma II-IV.

View Article and Find Full Text PDF

Detecting IDH and TERTp mutations in diffuse gliomas using H-MRS with attention deep-shallow networks.

Comput Biol Med

January 2025

Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey; Center for Neuroradiological Applications and Research, Acibadem University, Istanbul, Turkey.

Background: Preoperative and noninvasive detection of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations in glioma is critical for prognosis and treatment planning. This study aims to develop deep learning classifiers to identify IDH and TERTp mutations using proton magnetic resonance spectroscopy (H-MRS) and a one-dimensional convolutional neural network (1D-CNN) architecture.

Methods: This study included H-MRS data from 225 adult patients with hemispheric diffuse glioma (117 IDH mutants and 108 IDH wild-type; 99 TERTp mutants and 100 TERTp wild-type).

View Article and Find Full Text PDF

IDH1 mutation inhibits differentiation of astrocytes and glioma cells with low oxoglutarate dehydrogenase expression by disturbing α-ketoglutarate-related metabolism and epigenetic modification.

Life Metab

April 2024

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.

Isocitrate dehydrogenase (IDH) mutations frequently occur in lower-grade gliomas and secondary glioblastomas. Mutant IDHs exhibit a gain-of-function activity, leading to the production of D-2-hydroxyglutarate (D-2HG) by reducing α-ketoglutarate (α-KG), a central player in metabolism and epigenetic modifications. However, the role of α-KG homeostasis in IDH-mutated gliomagenesis remains elusive.

View Article and Find Full Text PDF

Introduction: The Wnt/planar cell polarity (PCP) signaling pathway is pivotal in regulating various biological processes such as early embryonic development, neural crest cell migration, and cancer invasion. Despite advances in understanding the role of Wnt/PCP pathway dysregulation in tumorigenesis, numerous unanswered questions remain. Our study focused on VANGL2, a core PCP gene, to elucidate its potential mechanistic involvement in cancer development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!