Myoglobin (Mb)-loaded poly(ε-caprolactone) (PCL) microparticles were prepared by multiple emulsion with solvent extraction/evaporation method under more or less deleterious operating conditions. The protein integrity was monitored using both UV/Vis absorbance ratio method at specific wavelengths and a conductometric bi-enzymatic biosensor based on proteinase K and pronase. Under standard operating conditions, Mb remained in native conformation, while different degrees of protein denaturation were observed by changing the encapsulation conditions. It was shown that solvent elimination under reduced pressure and in a lower extent addition of a higher molecular weight PCL led to protein alteration. In the first case, the loss of protein integrity can be attributed to residual solvent entrapped in particles whose solidification was accelerated. In the second case, denaturation may be explained by an increase in the protein exposure time at water/organic solvent interface due to an increase in organic phase viscosity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2011.01.013 | DOI Listing |
Eur J Pharm Biopharm
June 2011
Université de Lyon, F-69622, Lyon, France.
Myoglobin (Mb)-loaded poly(ε-caprolactone) (PCL) microparticles were prepared by multiple emulsion with solvent extraction/evaporation method under more or less deleterious operating conditions. The protein integrity was monitored using both UV/Vis absorbance ratio method at specific wavelengths and a conductometric bi-enzymatic biosensor based on proteinase K and pronase. Under standard operating conditions, Mb remained in native conformation, while different degrees of protein denaturation were observed by changing the encapsulation conditions.
View Article and Find Full Text PDFTalanta
April 2010
Université de Lyon, Lyon1, Laboratoire des Sciences Analytiques, CNRS UMR 5180, Bâtiment CPE, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France.
A new conductometric biosensor has been developed for the determination of short chain primary aliphatic alcohols. The biosensor assembly was prepared through immobilization of alcohol oxidase from Hansenula sp. and bovine liver catalase in a photoreticulated poly(vinyl alcohol) membrane at the surface of interdigitated microelectrodes.
View Article and Find Full Text PDFBiosens Bioelectron
August 2005
Laboratoire des Sciences de l'Environnement, Ecole Nationale des Travaux Publics de l'Etat, rue Maurice Audin, 69518 Vaulx-en-Velin Cedex, France.
A conductometric biosensor using immobilised Chlorella vulgaris microalgae as bioreceptors was used as a bi-enzymatic biosensor. Algae were immobilised inside bovine serum albumin membranes reticulated with glutaraldehyde vapours deposited on interdigitated conductometric electrodes. Local conductivity variations caused by algae alkaline phosphatase and acetylcholinesterase activities could be detected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!