Background: The skeletal elements of vertebrate embryonic limbs are prefigured by rod- and spot-like condensations of precartilage mesenchymal cells. The formation of these condensations depends on cell-matrix and cell-cell interactions, but how they are initiated and patterned is as yet unresolved.
Results: Here we provide evidence that galectins, β-galactoside-binding lectins with β-sandwich folding, play fundamental roles in these processes. We show that among the five chicken galectin (CG) genes, two, CG-1A, and CG-8, are markedly elevated in expression at prospective sites of condensation in vitro and in vivo, with their protein products appearing earlier in development than any previously described marker. The two molecules enhance one another's gene expression but have opposite effects on condensation formation and cartilage development in vivo and in vitro: CG-1A, a non-covalent homodimer, promotes this process, while the tandem-repeat-type CG-8 antagonizes it. Correspondingly, knockdown of CG-1A inhibits the formation of skeletal elements while knockdown of CG-8 enhances it. The apparent paradox of mutual activation at the gene expression level coupled with antagonistic roles in skeletogenesis is resolved by analysis of the direct effect of the proteins on precartilage cells. Specifically, CG-1A causes their aggregation, whereas CG-8, which has no adhesive function of its own, blocks this effect. The developmental appearance and regulation of the unknown cell surface moieties ("ligands") to which CG-1A and CG-8 bind were indicative of specific cognate- and cross-regulatory interactions.
Conclusion: Our findings indicate that CG-1A and CG-8 constitute a multiscale network that is a major mediator, earlier-acting than any previously described, of the formation and patterning of precartilage mesenchymal condensations in the developing limb. This network functions autonomously of limb bud signaling centers or other limb bud positional cues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042966 | PMC |
http://dx.doi.org/10.1186/1471-213X-11-6 | DOI Listing |
J Anat
July 2017
Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
The highly ordered multilayered organization of the adult chicken retina is a suitable test model for examining zonal distribution of the members of a bioeffector family. Based on the concept of the sugar code, the functional pairing of glycan epitopes with cognate receptors (lectins) is emerging as a means to explain the control of diverse physiological activities. Having recently completed the biochemical characterization of all seven adhesion/growth-regulatory galectins present in chicken, it was possible to establish how the individual characteristics of their expression profiles add up to shape the galectin network, which until now has not been defined at this level of complexity.
View Article and Find Full Text PDFAnat Rec (Hoboken)
December 2015
Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, 80539, Munich, Germany.
Divergence from an ancestral gene leads to a family of homologous proteins. Whether they are physiologically distinct, similar, or even redundant is an open question in each case. Defining profiles of tissue localization is a step toward giving diversity a functional meaning.
View Article and Find Full Text PDFAnat Rec (Hoboken)
March 2011
Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University, Veterinärstrasse 13, Munich, Germany.
Characterization of all members of a gene family established by gene divergence is essential to delineate distinct or overlapping expression profiles and functionalities. Their activity as potent modulators of diverse physiological processes directs interest to galectins (endogenous lectins with β-sandwich fold binding β-galactosides and peptide motifs), warranting their study with the long-term aim of a comprehensive analysis. The comparatively low level of complexity of the galectin network in chicken with five members explains the choice of this organism as model.
View Article and Find Full Text PDFBMC Dev Biol
February 2011
Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
Background: The skeletal elements of vertebrate embryonic limbs are prefigured by rod- and spot-like condensations of precartilage mesenchymal cells. The formation of these condensations depends on cell-matrix and cell-cell interactions, but how they are initiated and patterned is as yet unresolved.
Results: Here we provide evidence that galectins, β-galactoside-binding lectins with β-sandwich folding, play fundamental roles in these processes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!